Nuclear Physics

(8th lecture)

Content

- Nuclear models #2: The Fermi-gas model (contd.)
 - The total kinetic energy
 - The asymmetry energy
 - The surface energy
- Nuclear models #3: The nuclear shell model
 - Experimental indication
 - What characterizes a shell?
 - Shells in atomic physics (reminder)
 - The nuclear single-particle shell model
 - The 1D and 3D harmonic oscillator case

The total kinetic energy of the nucleons:

\[E_k = \frac{1}{2(2\pi m)^2} \int \frac{p^2}{2M} n(p) d^3p = V \frac{2}{h^3} \int_0^{p_f} p^2 \cdot 4\pi p^2 dp = \frac{V}{h^3} \cdot \frac{4\pi}{M} \cdot \frac{p_f^5}{5} \]

The total kinetic energy of the protons and the neutrons:

\[E_k^{(p)} = \frac{3}{10} \left(\frac{3\pi^2}{10} \right)^{3/2} \frac{h^2}{M} Z^{3/2} \]

\[E_k^{(n)} = \frac{3}{10} \left(\frac{3\pi^2}{10} \right)^{3/2} \frac{h^2}{M} N^{3/2} \]

We note that \(\frac{N-Z}{A} \ll \frac{Z}{A} = \frac{1}{2} \), and a Taylor-expansion yields:

\[Z^{3/2} = A^{3/2} \left(\frac{Z}{A} - \frac{N-Z}{A} \right)^{3/2} = A^{3/2} \left[\left(\frac{1}{2} \right)^{3/2} - \frac{5}{3} \left(\frac{N-Z}{A} \right) \left(\frac{1}{2} \right)^{3/2} + \frac{5}{9} \left(\frac{N-Z}{A} \right)^2 \left(\frac{1}{2} \right)^{3/2} - \ldots \right] \]

\[N^{3/2} = A^{3/2} \left(\frac{Z}{A} + \frac{N-Z}{A} \right)^{3/2} = A^{3/2} \left[\left(\frac{1}{2} \right)^{3/2} + \frac{5}{3} \left(\frac{N-Z}{A} \right) \left(\frac{1}{2} \right)^{3/2} + \frac{5}{9} \left(\frac{N-Z}{A} \right)^2 \left(\frac{1}{2} \right)^{3/2} - \ldots \right] \]

The asymmetry energy:

\[A = \frac{N}{A} - \frac{Z}{A} \]

\[A \equiv \frac{N-Z}{A} \]

Note: It has positive sign, therefore it decreases the binding energy!

(Unlike in the Weizsäcker formula)

In the second part only the second order terms remain (the linear terms cancel):

\[A \left(\frac{N-Z}{A} \right)^2 = \left(\frac{N-Z}{A} \right)^2 \]

This way we get an asymmetry term, similar to the Weizsäcker formula’s!

Note: The asymmetry term also has a positive sign! This means that it increases the kinetic energy, and therefore decreases the binding energy (like in the Weizsäcker formula).
The **surface energy**:
For simplicity consider now a cube (instead of a sphere)
The wave function: \(\varphi(r) = \frac{2}{V} \sin(k_x x) \sin(k_y y) \sin(k_z z) \)
where \(k_x = \frac{\pi}{L} n, \ k_y = \frac{\pi}{L} m, \ k_z = \frac{\pi}{L} \ell \) and \(k^2 = k_x^2 + k_y^2 + k_z^2 \)
The number of states in the phase space \(V = L^3 \) :
\[
\mathcal{N} = A = 2 - \frac{V}{(2\pi)^3} \frac{4\pi K^3}{3} = 2 - \frac{V}{8} \frac{4\pi}{3} \left(\frac{LK^3}{\pi} \right)
\]
where \(K = k_f \)
Volume of the 1/8 sphere in the space of \((n, m, \ell)\) quantum numbers
So the total number of nucleons: \(A \propto K^3 \) from where: \(K \propto A^{1/3} \)

The main assumption of the Fermi-gas model was, that the nucleons move „independently” – without interacting with each other – in an outside potential well. Is this not a crazy assumption for strongly interacting particles?
Answer:
\[
n(p) = \begin{cases} 1, & \text{if } p \leq p_f \\ 0, & \text{if } p > p_f \end{cases}
\]
In the ground state of the nucleus every level is occupied up to the Fermi-level. Particles could scatter only out over the Fermi-level.
If a particle gets higher energy and momentum (outside the Fermi-level) in a scattering process, energy and momentum conservation would mean that the „other” particle should get lower energy/momentum → no empty state there, **forbidden**!
This shows also the **validity** of the Fermi-gas model: mainly the ground state properties.

Nuclear shell model
1) **Experimental indications**
a) Neutron capture cross sections
b) Binding energy difference of the last neutron
c) Excitation energy of the first excited states:

Conclusion: nuclei with the following Z and/or N numbers are extremely stable (in comparison with their neighbours): 2, 8, 20, 28, 50, 82, 126. These are the "magic numbers".

Nuclei with magic Z or N numbers are called "magic nuclei". If Z and N both are magic numbers, they are "double magic nuclei".

The following nuclei are double magic:

- ^2He, ^{16}O, ^{20}Ca, ^{40}Ca, ^{48}Ni, ^{78}Ni, ^{208}Pb
- ^4He, ^{18}Ar, ^{36}Kr, ^{54}Xe, ^{86}Rn

2) What characterizes a "shell"?

"Shell is a set of quantum-mechanical states with the same main quantum number". True?

Remember, in atomic physics:

- The noble gases are (experimental fact): magic numbers should be: 2, 10, 18, 36, 54, 86.
- The nth "shell" can hold theoretically $2n^2$ electrons. Therefore the theoretical magic numbers would be:
 - $n=1$: 2^2 (☺)
 - $n=2$: 4^2 (☺)
 - $n=3$: 6^2 (??)
 - $n=4$: 8^2 (??)
 - $n=5$: 10^2 (??)

There is a discrepancy between theory and experiment!

Conclusion: The magic numbers in Nature are not defined by the rule above!

Shells in atomic physics (reminder):

H-atom (Bohr-model)

This determines the "energy-shells"!

$E = -\frac{me^2}{8\hbar^2 c^2} \frac{1}{r}$

$\rightarrow n = 1, 2, 3...$

The quantum-mechanical treatment (Schrödinger-equation):

$-\frac{\hbar^2}{2m} \nabla^2 + V(r) \psi(r, \theta, \phi) = E \cdot \psi(r, \theta, \phi)$ (spherical coordinates)

Wave function: $\psi_{n, l, m}(r, \theta, \phi) = \frac{R_n(r)}{r} Y_l^m(\theta, \phi) \rightarrow \begin{cases} n = 0, 1, 2, 3... \\ l = 0, 1, 2, 3... \\ -l \leq m \leq +l \end{cases}$

What is the relation between n in the Bohr-model (defining the energy-shells), and the 3 quantum numbers of the wave-function?
Shells in atomic physics (reminder):

Bohr Quant. mech. No. of particles

<table>
<thead>
<tr>
<th>(n)</th>
<th>(n)</th>
<th>(l)</th>
<th>(2(2l+1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1s 1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2s 2</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>2p 3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3p 6</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>0</td>
<td>3s 2</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>2</td>
<td>4p 6</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>4d 10</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>4s 2</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>5d 10</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>3</td>
<td>5f 14</td>
</tr>
</tbody>
</table>

This determines the „shells“!

Why are the shells different in the Periodic System?

Why are the shells different in the Periodic System?

- **Bohr:***
 - The „size“ gets larger!

- **Why are the shells different in the Periodic System?***
 - The „screening“ of the occupied inner states deforms the potential!
 - Splitting of the states occur according to \(l \)!

The shell parameters depend on the shape of the potential!

3) The nuclear shell model

„The shell parameters depend on the shape of the potential!“

How is the „nuclear potential“?*

The nuclear Hamiltonian:

\[
\hat{H} = \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 + \sum_{j \neq i} V_{ij}(\mathbf{r}_i, \mathbf{r}_j) \right)
\]

A „trick“:

\[
\hat{H} = \sum_{i=1}^{A} \left(-\frac{\hbar^2}{2m_i} \nabla_i^2 + \langle \mathbf{r}_i \rangle \right) + \left[\sum_{i=1}^{A} \left(\langle \mathbf{r}_i \rangle \right) - \sum_{i=1}^{A} V(\mathbf{r}_i) \right]
\]

- **single-particle operators**
- **particle-particle interactions**

„mean“ potential

„residual“ interaction

(for single-particles)

(will be neglected)

This is the „single-particle shell model”

Every particle moves independently in a mean potential

The nuclear shell model (contd.)

The shape of the „mean“ nuclear potential.*

- **Central →** depends only on the absolute value of \(r \): \(V(r) \)
- **Similar shape as the nuclear density**
 - (since the nucleons create it)

It is difficult to solve the Schrödinger-equation for this shape.

Two different approximations:

- **square well**
- **harmonic oscillator**
The nuclear shell model (contd.)

Case #1: square well (infinite)!

\[V(r) = \begin{cases} -V_0, & \text{if } r \leq R \\ \infty, & \text{if } r > R \end{cases} \quad (V_0 > 0) \]

Since the potential is central, the wave-function can be separated:

\[\psi(r, \Omega) = \frac{\phi(r)}{r} \eta(\Omega) \]

The Schrödinger equation in the interior region in spherical coordinate system is:

\[-\frac{\hbar^2}{2M} \Delta \psi(r, \Omega) - V \psi(r, \Omega) = E \psi(r, \Omega) \]

We get for the radial part:

\[\frac{d^2 \phi_{n,l}}{dr^2} + \frac{2}{r} \frac{d \phi_{n,l}}{dr} + \left(\frac{2M}{\hbar^2} (V_0 - E) - \frac{l(l+1)}{r^2} \right) \phi_{n,l} = 0 \]

Solution: Bessel functions:

\[\phi_{n,l}(r) = j_l(k_{n,l}r) \]

where \(k_{n,l}^2 = \frac{2M}{\hbar^2} (V_0 - E_{n,l}) \)

The functions have to go to 0 at \(r = R \)

\[\Rightarrow \text{only roots of the Bessel functions are allowed} \to k_{n,l} \to \text{discrete values} \to E_{n,l} \to \text{discrete values too.} \]

<table>
<thead>
<tr>
<th>kR</th>
<th>(L = 0) (1s)</th>
<th>(2(L+1))</th>
<th>Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\pi)</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4.49</td>
<td>L = 1 (2p)</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>5.79</td>
<td>L = 2 (3d)</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>2x</td>
<td>L = 0 (2s)</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>6.99</td>
<td>L = 3 (4f)</td>
<td>14</td>
<td>34</td>
</tr>
<tr>
<td>7.22</td>
<td>L = 1 (3p)</td>
<td>6</td>
<td>40</td>
</tr>
</tbody>
</table>

Second column: angular momentum quantum number \(L\) and the atomic physics notation of the state.

Note: inside a shell the higher \(L\) states go lower!

The nuclear shell model (contd.)

Case #2: the harmonic oscillator:

\[V(r) = -V_0 + \frac{1}{2} m \omega^2 r^2 \]

Easiest solution is in Descartes coordinates

Wave function (in one dimension):

\[\psi_n(x) = \frac{1}{\sqrt{2^n n!}} \left(\frac{m \omega}{\pi \hbar} \right)^{1/4} e^{-m \omega x^2 / 2 \hbar} H_n \left(\sqrt{m \omega \hbar} \right) \]

where \(H_n(x) = (-1)^n e^{-x^2} \left(\frac{d}{dx} \right)^n e^{x^2} \) are the Hermite-polynomials

The energy spectrum:

\[E_n = \hbar \omega \left(n + \frac{1}{2} \right) \quad n = 0, 1, 2, ... \]

The 3D harmonic oscillator (in Descartes coordinates):

\[\psi_{n_x,n_y,n_z}(x,y,z) \propto e^{-\frac{m \omega (x^2 + y^2 + z^2)}{2 \hbar}} H_{n_x} \left(\sqrt{\frac{m \omega}{\hbar}} x \right) H_{n_y} \left(\sqrt{\frac{m \omega}{\hbar}} y \right) H_{n_z} \left(\sqrt{\frac{m \omega}{\hbar}} z \right) \]

\[E_n = \hbar \omega \left(n_x + n_y + n_z + \frac{3}{2} \right) \quad \text{where} \quad n = n_x + n_y + n_z \]

The possible number of particles in a state:

\[2g = (n + 1)(n + 2) \]
The nuclear shell model (contd.)

The 3D harmonic oscillator (in spherical coordinates):
\[
\left(-\frac{\hbar^2}{2m} \nabla^2 + V(r) \right) \psi(r, \vartheta, \varphi) = E \psi(r, \vartheta, \varphi)
\]

Wave function: \[\psi_{n,l,m}(r, \vartheta, \varphi) = \frac{R_n(r)}{r} Y_l^m(\vartheta, \varphi) \quad \begin{cases} n = 0,1,2,3... \\ l = 0,1,2,3... \\ -l \leq m \leq +l \end{cases} \]

Question:
What is the relation between \(n \) in the Descartes states (defining the energy-shells), and the 3 quantum numbers of the wave-function?

The idea for finding the correspondence: functions should be chosen to follow
- the same parity behaviour and
- the same number of degenerations!

The harmonic oscillator is a good „first“ approximation, but something more should be included!

<table>
<thead>
<tr>
<th>(n)</th>
<th>(\pi)</th>
<th>((n + 1)(n + 2))</th>
<th>(n)</th>
<th>(l)</th>
<th>(2(2l + 1))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>+</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1s</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>2p</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>12</td>
<td>1</td>
<td>0</td>
<td>2s</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>20</td>
<td>1</td>
<td>1</td>
<td>3p</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>30</td>
<td>2</td>
<td>0</td>
<td>3s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4d</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>4</td>
<td>5g</td>
</tr>
</tbody>
</table>

Remember:
\[\psi_n(-r) = (-1)^n \psi_n(r) \]
\[2g = (n + 1)(n + 2) \]

Magic numbers:
2, 8, 20, 28, 50, 82, 126