DIPLOMAMUNKA

Önhívó filmek klinikai alkalmazása

Zongor Zsuzsánna

Témavezető: Dr. Pesznyák Csilla
Egyetemi docens
BME Nukleáris Technika Intézet
Nukleáris Technika Tanszék

BME
2015
Diplomamunka feladat a Fizikus mesterképzési (MSc) szak hallgatói számára

<table>
<thead>
<tr>
<th>A hallgató neve:</th>
<th>Zongor Zsuzsánna</th>
<th>szakiránya: orvosi fizika</th>
</tr>
</thead>
<tbody>
<tr>
<td>A diplomamunkát gondozó (a záróvizsgát szervező) tanszék:</td>
<td>Nukleáris Technika Tanszék</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A diplomamunka készítésének helye:</th>
<th>Országos Onkológiai Intézet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A témavezető neve: Dr. Peszyák Csilla</td>
<td>A konzulens neve: (külső témavezető esetén kijelölt tanszéki munkatárs)</td>
</tr>
<tr>
<td>munkahelye: BME, NTI</td>
<td>- beosztása:</td>
</tr>
<tr>
<td>beosztása: egyetemi adjunktus</td>
<td>- e-mail cime:</td>
</tr>
<tr>
<td>e-mail cime: peszyak@reak.bme.hu</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A diplomamunka címe:</th>
<th>Őnhívő filmek klinikai alkalmazása</th>
</tr>
</thead>
<tbody>
<tr>
<td>azonosítója:</td>
<td>DM-2012-97</td>
</tr>
</tbody>
</table>

A témá rövid leírása, a megoldandó legfontosabb feladatok felsorolása:

Az Őnhívő filmek egyre nagyobb szerepet kapnak a sugárterápiás dozimétriában. Nem igényelnek hívóberendezést és elemzésük is megoldható számítógépes program segítségével. A diplomamunkás feladata lesz az Őnhívő filmek klinikai alkalmazási feltételeinek meghatározása, valamint e dozimétriai technika mérési pontosságának összehasonlítása más mérési módszerekkel.

Feladatok:

1. Az Őnhívő film alapú film doziméria működési elvénak megismerése és összefoglaló leírása.
2. Az Őnhívő film doziméria klinikai alkalmazásáról megjelent szakirodalom áttekintése.
3. A szkennert és a filmémző program dozisfajlóbrálásával, a többi felbontás és árzkönyvség vizsgálata.
4. Dózisprofil mérésé és összehasonlítása félvezető detektoros mérésekkel.
5. Besugárzási tervek dozimétriai elemzése Őnhívő film dozimétriával.

A feladat kiadásának időpontja: 2012.09.03.

Témavezető vagy tanszéki konzulens aláírása:

[Signature]

Diplomamunka témakirását jóváhagyom (tanszékeleve aláírása):

[Signature]
Önállósági nyilatkozat

Alulírott Zongor Zsuzsánna a Budapesti Műszaki és Gazdaságtudományi Egyetem fizikus MSc szakos hallgatója kijelentem, hogy ezt a diplomamunkát meg nem engedett segédeszközök nélkül, önállóan, a témavezető irányításával készítem, és csak a megadott forrásokat használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból vettem, a forrás megadásával jelöltém.

…………………………

Zongor Zsuzsánna
Tartalom

1 Bevezetés .. 1
2 Célkitűzés ... 3
3 Mérési módszerek ... 4
 3.1 Radiográfiai filmek ... 4
 3.2 Radiokróm filmek .. 6
 3.2.1 Filmek kezelése .. 9
 3.3 Kiolvasó eszközök alkalmazása ... 10
 3.3.1 Denzitométer ... 10
 3.3.2 Szkenner .. 10
 3.4 Az RGB csatornák hatása a filmdozimetria minőségére 12
 3.5 Kiértékelő szoftverek.. 14
 3.5.1 PTW Mephisto .. 15
 3.5.2 FilmQAPro szoftver .. 16
4 Mérési feladatok .. 18
 4.1 Film dozimetriai tulajdonságainak vizsgálata ... 18
 4.1.1 Kalibrálás ... 18
 4.1.2 Dózisteljesítmény függés .. 19
 4.1.3 Energiafüggés ... 20
 4.1.4 Uniformitás ... 20
 4.1.5 Mélydózis görbe meghatározása filmdozimetriával 21
 4.1.6 Dózisprofilok mérése .. 22
 4.1.7 A radiokróm filmek sötétedésének időfüggése ... 22
 4.1.8 Szkenner tulajdonságainak vizsgálata ... 22
 4.1.9 Tervek ellenőrzése .. 23
5 Eredmények és megbeszélések ... 25
 5.1 Film tulajdonságai ... 25
 5.1.1 Kalibrálás ... 25
 5.1.2 Dózisteljesítmény függés ... 28
 5.1.3 Energiafüggés ... 29
 5.1.4 Uniformitás ... 29
 5.1.5 Mélydózis görbék ... 32
 5.1.6 Dózisprofilok ... 35
5.1.7 Sötétedés, időfüggés .. 37
5.2 Szkenner tulajdonságai .. 38
5.3 Sugárterápiás tervek ellenőrzése ... 41
 5.3.1 Nyílt mezős terv ellenőrzése .. 43
 5.3.2 Konformális besugárzás terv ellenőrzése .. 44
 5.3.3 Egy IMRT mező terve ellenőrzése .. 45
 5.3.4 IMRT besugárási terv ellenőrzés .. 46
 5.3.5 Rapid ARC besugárási terv ellenőrzése .. 47
 5.3.6 SBRT besugárási terv ellenőrzése ... 48
 5.3.7 SIB besugárási terv ellenőrzése .. 48
5.4 Gamma analízis eredményei: ... 49
6 Protokoll .. 51
7 Összefoglalás .. 53
8 Rövidítések jegyzéke ... 54
9 Irodalomjegyzék .. 55
10 Köszönetnyilvánítás ... 57
11 Melléklet ... 58
1 Bevezetés

Röntgen és Becquerel a röntgen-sugárzás (1895), illetve a radioaktivitás (1886) felfedezésével számos tudományág fejlődését indították el. A kezdetekben nem gondolták, hogy ezeknek a sugárzásoknak káros hatási is lehetnek. Amikor kezdték ezeket a jelenségeket felismerni (pl. leukémia, bőr rák...) a szakemberek számára fontossá vált, hogy tisztában legyenek mekkora a közölt dózis és hogyan nyelődik el az emberi testben? Számos kérdés merült fel, mint pl. milyen mértékegységet kellene alkalmazni; mekkora a dózis, milyen egészségügyi következménnyel jár; az adott sugárzásnak milyen sugáriológiai hatása van? Ilyen és ehhez hasonló kérdések indították el a dozimetria és mérés technika fejlődését, a következő alapgondolatokkal:

- 1899-ben Rutherford megállapította: „A sugárzást két módon lehet vizsgálni, az egyik a fotografiai lemezzel való kölcsönhatás, a másik elektromos kisüléseken alapul, ez gyorsabb és pontosabb eredményt ad, mint a fotográfiás.”[12]
- Marie Curie szerint: „az elektromos módszer a sugárzás levegőben való elnyelésén alapszik”
- A sugárzás adagjának, a dózisnak arányosnak kell lennie az általa okozott biológiai hatással, és mérhető változást kell, hogy okozzon.

Sugárvédelmi szempontból a detektorok egy részét személyi dozimetriára alkalmazzák, hogy pontosan tudni lehessen, mekkora sugárterhelést kap az adott személy. A másik részük a páciensre leadott, kezelési dózis mérésére szolgál.

Doziméterekkel szembeni elvárások: a mérés megismételhető és pontos legyen, a jel/dózis arány széles sávban állandó, dózisteljesítmény független, energia független, az irányfüggetlen, kicsi legyen, a térbeli felbontás nagy és széles sávban használható a berendezés.

Az első sugárvédelmi konferenciát Londonban szervezték 1925-ben, a következő néven: First International Congress for Radiology in London, Foundation of (ICRU) "International Commission Radiation Units and Measurement”. Ebben az időben már felfedezte Thomson az elektron, Rutherford az alfa és a béta-sugárzást, a Curie házaspár a polóniumot és a rádiu mót, Villard a gammasugárzást, Planck javaslatot tett a kvantumelméletre, vizsgálták az exponenciális bomlás törvényt és a bomlási sorokat, és tudták, hogy a Röntgen- és a gamma sugárzásoknak biológiai hatásuk van. Viszont nem ismerték az atom pontos felépítését, a protont, a neutront, a Röntgensugár és az anyag közötti kölcsönhatás mechanizmusát, és nem tudták még, hogy hogyan mérjék ezeket.
A korai mérőeszközökkel első sorban kimutatni akarták a sugárzást, mennyiséget rendeltek hozzá és mértékegységet adtak neki. Bevezették a Curie, Radon és Becquerel mértékegységeket.

1937-ben, a második Nemzetközi Radiológiai Kongresszuson (Second International Congress of Radiology) Stockholmban definiálták a \textbf{röntgent}, mint az expozíció mértékegységét.

A gáztöltésű detektorok felépítése a 40-es évektől nem sokat változott, majd a 40-es évek második felétől megjelentek a szcintillációs detektorok, valamint a 60-as években a félvezető detektorok, ez utóbbiak a gáztöltésű detektorokat a spektroszkópiai mérésekből ki is szorították. 1975-ben bevezetik az elnyelt dózis és a KERMA fogalmát, valamint mértékegységét a Gray-t (Gy). Definíció szerint az 1 Gray az 1 Joule ionizáló sugárzás elnyelődése 1 kg tömegű anyagban. Az elnyelt dózis egysége 1 Gy, ami az egységnyi tömegben elnyelt energia mértékegysége [19]:

\[
1 \text{ Gy} = 1 \text{ J kg}^{-1}
\]

\textbf{Szcintillációs detektorok} - már 1903-ban észlelték, hogy a cink-szulfid kristályok alfa sugárzás hatására fényt bocsájtanak ki, és ezt a jelenséget az alfa részecskék egyedi számlálására is lehet használni. Ebben az esetben cink-kristályokat ragasztottak üveg lemezre és a szcintillációkat mikroszkópon keresztül nézték, ezzel a módszerrel gamma- vagy bétasugárzást nem lehetett megfigyelni. A fotoelktron-sokszorozók megjelenése 1940-ben oldotta meg ezt a problémát.

A napjainkban is használt mérési alapokat 1945-48-ban Dreyfus, Balu és Hofftadter vezették be, NaI (Tl) kristályra alkalmazva. Megállapították, hogy a kristályból kilépő fény felvillanások intenzitása egyenesen arányos a kristálynak átdott energiával. 1950-től a gyors technikai
fejlődésnek köszönhetően újabb kristályokat alkalmaztak, ezek jelét foto multiplikátorok (PMT) segítségével erősítették. A szintillációs detektorok képezik a gamma kamera, a PET (Pozitron Emissziós Tomográfia) és a SPECT (Single photon emission computed tomography) alapjait.

Félvezető detektorok - az ionizáció nem gázban, hanem szilárd kristályos anyagban jön létre, a töltéshordozók elektron-lyuk párokkal. 1960-as évek felétől kezdték alkalmazni őket radioaktív sugárzások mérésére. A legelterjedtebb a Si és a Ge használata. **Termolumineszcens dozimetria** – napjainkban a személyi dőzismérők is ezen az elven működnek. A termolumineszcens detektorok működésének alapja, hogy az ionizáló sugárzás (általában gamma-sugárzás) hatására a kristályok egyes elektronjai gerjesztett állapotba kerülnek, majd a kristályszenyező atomjainak helyén befogódnak, és onnan csak hő hatására lépnek ki és térnek vissza az alapállapotba. Az alapállapotba való visszatéréskor látható, vagy ahhoz közeli hullámhosszúságú fényt emittálnak. A kibocsátott fotonok száma arányos a doziméterben (a kristályokban) eredetileg elnyelt sugárdózissal. Ezekkel párhuzamosan a film doziméterek is fejlődtek, igaz kezdetben csak diagnosztikai célokra használták őket. [2], [3], [4], [5]

2 **Célkitűzés**

Az önhívő filmek egyre nagyobb szerepet kapnak a sugárterápiás dozimetránál. Nem igényelnek hívóberendezést és elemzésük is megoldható számítógépes program segítségével. Célkitűzésünk az önhívő filmek alkalmazási feltételeinek meghatározása a klinikumban, valamint e dozimetria technika mérési pontosságának összehasonlítása más mérési módszerekkel.

Feladatok:

1. Az önhívó film alapú film dozimetria működési elvének megismerése és összefoglaló leírása.
2. A szkenner és a filmelemző program dóziskalibrálása, a térbeli felbontás és érzékenység vizsgálata.
3. Dózisprofil mérése és összehasonlítása félvezető detektoros mérésekkel.
5. Különböző gyártók által forgalmazott filmelemző szoftverek összehasonlítása.
3 Mérési módszerek

3.1 Radiográfiai filmek

A radiográfiai filmeket használják a diagnosztikában, sugárterápiában, és a sugárvédelemben. A radiográfiai filmek fejlődése a foto-filmekekkel kezdődött és egy ideig párhuzamosan haladt vele. Az első kereskedelmileg fontos közvetlen-képalkotókat az 1800-as években fejlesztették ki, ezek papír és gél alapú anyagok voltak kálium-dikromáttal impregnálva, ismert volt részlegesen foto redukciós (foton elnyelő) tulajdonságuk, sugárzás hatására az anyag barna színű lett.

A radiológiai filmek felépítése nagyon hasonló a fényképezésnél használt filmekhez.

A filmek fejlődésének fontosabb állomásai:

- 1889 - Easman Kodak – cellulóz-nitrát bázisú emulzió létrehozása
- 1890 - Hurter és Driffield - optikai denzitás meghatározása
- 1895 – Röntgen - az első röntgenfilm felvétel elkészítése
- 1913 - Kodak – Cellulóz- nitrát bázisú film
- 1918 - Kodak - dupla emulziós film
- 1933 - Dupont - Röntgen film, kék bázissal (blue base)
- 1942 - Pako –automatikus film előhívó (automatic film processor)
- 1960 - Dupont - Poliészter bázis bevezetése
- 1965 - Kodak - gyors film előhívás, feldolgozás
- 1972 - Kodak – XTL, XV és XV2 típusú radiográfiai filmek, dozimetría mérésekre alkalmazták, dózisintervallumuk a következő volt: XTL:1-15cGy, XV2:5-100cGy
- 1983 - Fuji - Számítógépes radiográfiai rendszer létrehozása
- 1994 -3M - dry process laser imaging – (lézer fénnyel világítottak meg a filmet majd hő közléssel hívták elő)
- 2000 - Kodak – film kiterjesztett dózis intervallummal (EDR és EDR2) - -XTL és XV továbbfejlesztései, az EDR2 dózisintervalluma: 25-400cGy [20]

Napjainkban a filmek alapját poliészter hordozóréteg adja, amin emulziós réteg található. A mechanikai védelmet egy vékony védőréteg biztosítja. A hordozó poliészter és az emulziós réteg közötti kapcsolatot egy vékony kötőréteg adja.

A poliészter hordozórétegeknek a következő kritériumokat kell teljesítenie:
• átlátszónak kell lennie, a film kiértékelésekor nem szabad jelentősen csökkenteni a fényintenzitát;
• elég rugalmasnak és erősnek kell lennie, hogy a használat során az elszenvedett mechanikai hatásokat sérülés nélkül elviselje;
• mérete nem változhat a tárolás és a használat során.

Az emulzió két legfontosabb összetevője a zselatin és az ezüst-halogenid kristályok. A zselatin szerepe, hogy megakadályozza az ezüst-halogenid kristályok csoportosulását, biztosítva egyenletes eloszlásukat, ez a filmek érzékeny anyaga az ezüst-halogenid, ami az orvosi gyakorlatban körülbelül 90%-99%-ban ezüst-bromid (AgBr) és 1%-10% ezüst-jodid (AgJ). Az ezüstjodid jelenléte a filmek érzékenységét pozitívan befolyásolja. Az emulzióban találhatóak még más érzékenységet növelő anyagok is. A besugárzás az AgBr-ot ionizálja, az Ag⁺ ionok redukálódnak: Ag⁺ + e⁻ → Ag, a kiváló ezüst latens képet ad.

Előhívás során az ezüst atomok jelenlétében az ezüst ionok is redukálódnak. Vagyis abban az AgBr kristályban, amelyben van már egyetlen redukált ezüstkristály, a hívás során valamennyi redukálódik. A film előhívása után vágik kiértekelhetővé a mért dózis. Fixálás során az elő nem hivott AgBr szemcséket imisszák. Az elnyelt dózistól függően különböző mértékben nyeli el a rajta keresztül áthaladó fényt. A filmet optikai denzitással lehet jellemezni (OD), ez méri a feketedés mértékét, amit denzitométerrel lehet kiolvasni. Ezen az elven működnek a filmdenzitométerek és a film szkennerek is a 1. képlet alapján:

\[OD = \log 10 \left(\frac{I_0}{I} \right) \]

ahol

• Io a kezdeti fényintenzitás
• I a filmen áthaladt fény intenzitása

A film kiváló 2D-s dóziseloszlás mérésére, információt nyújt a sugárzás síkbeli eloszlásáról.

Az optikai denzitás azonban nemcsak a dózistól függ, hanem függ attól is, hogy az adott dózist milyen energiájú sugárzás hozta létre. OD = f (E,D). A filmekkel mérhető dózis tipikusan mGy és Gy nagyságrendű. Általában minőségbiztosításra és relatív dozimetriai mérésekre alkalmazzák, de körültekintő kalibrálást követően abszolút mérésekre is alkalmas lehet. A kalibrálás során ismert dózissal sugarazzák be a filmet és megmérjük azok optikai denzitását. OD=A\times D+B egyenest kell illeszteni az OD és D eredményekre, amiből meghatározhatók az A, B ismeretlenek. A filmdozimetria hátrányai: kis dózistartományban alkalmazható, nagy az
energiafüggése, energia elnyelési és átadási tulajdonságai nem egyeznek a biológia szövetekével, tehát nem szövet ekvivalens, fenyérzékeny, a módszer érzékeny az előhívó folyadék tulajdonságaira, pl. hőmérséklet, összetétel.

3.2 Radiokróm filmek

A radiokróm film technológia a sugárzásra érzékeny monomereken alapul, amik radioaktív sugárzás hatására polimerizálódnak és színt váltanak. A film sötétedéséből, megfelelő kalibrálás után, vissza lehet számlolni, hogy mekkora dózisú sugárzás érte a film adott részét. Minél sötétebb annál több ionizáló sugárzást nyelt el.

Az aktív réteg egy hordozó- és egy védő réteg között helyezkedik el. Előnyei a röntgen filmekkel szemben, hogy nincs előhívásból eredő hiba, a film elszineződése magától alakul ki; szemcsemente, nagy dózis gradiens esetén is használható, például sztereotaxiás besugárzásánál, vagy brachyterápiánál mert a folyamat dózisteljesítmény független, viszont rosszabb a felbontása, mint a radiográfiai filmeknek.

Az évtizedek folyamán különböző vegyületeket és konstrukciókat alkalmaztak a radiokróm filmek előállításánál. A kutatások kezdetén alkalmazták a trifenil-tetrazólium-klorid (TTC) sókat, mint közvetlen-képkotókat, biológiai festett minták és szövetek jellemzésére, valamint a polidiacetilént, ami besugárzás előtt színtelen, viszont tartalmaz vékony mikrokristályos diszperziós (színszóró) bevonatot, ami sugárzás hatására megváltoztatja a színét.

Az első radiokróm filmeket ipari felhasználásra fejlesztették ki. Az érzékeny réteg csak 6-7 µm volt, ami alacsony szenzitivitást eredményezett, viszonylag nagydózisú mérésekre használták 50-2500 Gy között. A radiokróm filmek történeti fejlődését az 1. táblázat foglalja össze, ami az I. mellékletben található.

Az általam használt film a GafChromic EBT2 QD+ egy új generációs fejlesztés.
 Mérete: 8”x10” (20,32cm×25,4cm), 25 lap/doboz, érzékenysége: 1cGy-40 Gy.

A különböző típusú filmek abszorpciós spektrumának alakja hasonló, a 3. ábrán látható az MD-55-2-es típusú film és az általam használt EBT2 QD+ elnyelési spektrumai.

A látható tartományban két fő abszorpciós csúcsa van 617 és 675 nm hullámhosszon. A filmeknek alapállapotban is van optikai denzitásuk, amit a film színes polimerjei okoznak, ezt vagy minden egyes film esetében levonjuk, mint háttéret (a régebbi filmeknél és elemzési módszereknél ezt alkalmazták), vagy megadjuk, mint nulla dözist a kalibráló sorozatban. Az MD-55 exponálatlan állapotban átlátszó, míg az EBT2, sárgás színű. Exponáltan az MD-55 kék, az EBT2 zöldeskék színű. Exponáltán az MD-55 kék, az EBT2 zöldeskék színű. Az előző generációs EBT filmek érzékenyek a kék hullámhosszra, az EBT2 már nem, az aktív rétegbe kevert sárga festék miatt, ami erősen abszorbeálja a kék fényt. Ha négy óra mesterséges fénnyel megvilágítjuk a filmet, akkor 0.5 %-os eltérés tapasztalható a pixel értékekben a fénytől védett filmhez képest. [12] A gyártó ajánlása szerint, hosszú távú tárolásra száraz, hűvös, sötét hely a legmegfelelőbb.

Az EBT filmek aktív rétegét alacsony rendszámú anyagok alkotják, becslések szerint a hatékony rendszám 6.98. Innen adódik a film vízkevivalens tulajdonsága (víz hatékony rendszáma 7.3). A különböző típusú filmeknél a használt anyagok, és azok mennyisége eltérő lehet gyártónként és modelleknévtől, de mindegyik tartalmaz szenet, hidrogént, oxigént, esetleg lítiumot, amennyiben klórt adalékolnak, akkor a film nem lesz vízkevivalens, mivel a klór rendszáma 17.
A 4. ábrán található az EBT2 film nagyított képe, ahol jól látható az aktív polimerek.

A film aktiv rétegének molekulái véletlenszerűen orientáltak, nincs kitüntetett irányuk, ami a 4. ábrán is látszik. A szkenner kiolvasó fénye, ha csak ezen a rétegen haladna át polarizálatlan lenne, de az aktív réteget borító védő és borító rétegek molekulái rendezettebbek. Emellett a rétegek vastagsága, sűrűsége és fényenélű képességei is különbözik. A kiolvasó fény áthaladva különböző tulajdonságú és molekula orientáltságú rétegein egyfajta polarizációt szenved. Ezért fontos, hogy mindig ugyanazt az orientációt használjuk a beolvasás során.[14]

A polimerizáció körülményeitől 100 µs-al a besugárzás után kezdődik. A polimer relatívan zsgorodik a monomerhez képest. A kezdeti gyors fázist egy lassúbb követi, ahol a változás az eltelt idő logaritmusával arányos. A besugárzás után 24-48 h-ban stabilizálódik. A protokollok készítésénél figyelembe kell venni a besugárzás utáni változásokat, a film sötétedését. [16]

3.2.1 Filmek kezelése
A filmet védeni kell a portól, az ujjlenyomatoktól és a mechanikai behatásoktól. Munka közben hintőpompákban le kell tartani a készítményt. Az esetleges zsíros szennyeződések a filmet és a portot sérülésre emészthet, amelyekkel a filmek termelésétől a rendelésig végig lehet törölni. Mivel a film szénoszkodási esetben a főként a páratlanul eredő hiba.

A filmek tetszőlegesen méretre vághatók, a vágás mentén sérüléseket keletkeznek és ezek a területek nem használhatók dőzismérésre. Vágás után legalább egy napot pihentetni kell a filmeket és utána lehet besugarazni, mert ennyi idő kell, hogy a film monomerjei rendeződjék. Nagyon fontos, hogy megjelenjenek az orientációban tudjuk pozicionálni, és a szkennelést is így kell elvégezni. A filmet vízfántomban is lehet használni,
bár körülményes az elhelyezése mivel fixálni kell, hogy ne mozogjon. Vízben a film homályossá válik, mert az éle nincs lezárva, és a víz beszivárog a rétegek közé, kiértékelés előtt jól ki kell szárítani, de várhatóan hatással lesz a film érzékenységére.

3.3 Kiolvasó eszközök alkalmazása

3.3.1 Denzitométer

3.3.2 Szkenner

A filmek kiértékelését lehet denzitométerrel végezni egyszerűbb dóziseloszlások mérésénél, de sokmezős terv kiértékelésére alkalmatlan. Filmek kiértékelésénél a szkenner denzitométerként funkcionál. A radiokróm film nagy előnye, hogy jó felbontású lap szkennerrel beolvasható, ami megkönnyíti a film elemzését és archiválást. A filmek digitalizálására EPSON Expression 10000 XL

Photo szkennert használtam, A3-as lapolvasó felülettel (5. ábra). Ahhoz, hogy a filmek beolvasása során minimalizálni tudjuk a dozimetriaibizonytalanságokat, meg kell vizsgálnunk, hogyan viselkedik a szkenner a film beolvasásakor. Munkámban elemeztem a következő lehetőségeket: a film mindkét oldali beolvasásának használhatósága, a film álló és fekvő orientációjának hatása, a film pozícionálása a szkenner felületén, többszörö beolvasás hatása a filmre, a szkenner beolvasási felületének uniformitása, a készülék bemegyózódésének hatása [15].

A lapolvasók mechanikai felépítése befolyásolja a filmkiértékelés eredményét. A szkennerek alapelemei:

1. olvasófej, ami fénycsövet, érzékelőt és tükröt tartalmaz,
2. üvegfelület, amire a film kerül,
3. fejmozgató motor és az elektronika,
4. léptetőmotor, ami az olvasófejet mozgatja, az üvegfelület alatt
Az olvasófej alulról megvilágítja a filmet, majd a visszavert fényt tükrő segítségével, egy
kicsinyítő lenccsen keresztül a szkenner belséjében található fix pontra rögzített CCD (Charge-
Coupled Device) érzékelőre főkuszálja, majd az érzékelő képpé alakítja a beérkező fényt. [17]

A CCD érzékelő optoelektronikai eszköz, amely a fényt kondenzátortöltéssé alakítja, amit a
cé láramköröket tartalmazó chip dolgoz fel. Minél nagyobb felbontást akarunk elérni, annál több
CCD egység kell sorba kötni. Ezek a CCD csövek additívák, tehát külön olvassák ki és tárolják
el minden pontnak a vörös, a zöld és kék színértékeit (RGB). A CCD érzékelői egy pont
fényének érzékelésére alkalmasak egy időben, ez a pixel. A CCD egység egy fotométer, ami a
ráeső fény mennyiségétől függő analóg feszültséget szolgáltat a kimeneten, ezt ADC konverter
digitalizálja. A 6. ábrán a CCD szkenner felépítése látható, a beolvasó fej fényének többszörös
visszaverődései miatt alakul ki a szkenner felületének szélein az optikai denzitás (OD)
csökkenése.
3.4 Az RGB csatornák hatása a filmdozimetria minőségére

Az exponált film optikai abszorpciója változik a hullámhosszal. Az első generációs filmek esetében csak a vörös csatornát használták a filmek szkennelésére, míg napjainkban már a teljes RGB spektrumon szkennelik a filmeket, és szoftveresen határozzák meg, hogy melyik spektrumot alkalmazzák a kiértékeléshez. X, a szkenner adott koordinátájának pixel értéke, a kiválasztott szín csatornán, a d_x, egy X pixel érték optikai denzitása, ami a 2. egyenlettel jellemezhető (\log, tízes alapú logaritmus)

$$d_x = -\log(X),$$

Minden X értéknek megfelel egy $D(X)$ dózisérték (7. ábra), valamint minden X értékehez hozzárendelődik a zajból eredő ΔX hiba, ami ΔD_X értékkel megváltoztatja a dózis értékét is, a folyamat a következő képlettel írható le:

$$X + \Delta X \leftrightarrow D(X) + \Delta D$$

Ezek a zajok keletkezhetnek a Beer-Lambert törvény alapján a film különböző rétegeinek eltérő vastagsága és sűrűsége miatt, a szkenner felületének különböző érzékenységéből, valamint a felületi szennyezésből eredő Newton gyűrűk végét. A leképezett dózisérték tartalmazza a hibás pixelek által létrehozott dóziseltéréseket is, ami hatással van a filmdozimetria minőségére.
Ha ezt a módszert eredményesen akarjuk használni, akkor korigálni kell a képet például a kalibráláskor létrehozott szkenner uniformitás korrekciós mátrixával.

A két csatornás dozimetriát ritkán alkalmazzák, ebben az esetben a kék csatorna segítségével csak azokat a zajokat lehet eltávolítani, amik a film vastagságváltozásából erednek, a 8. ábrán jól látható, hogy a kék csatorna tartalmazza a zajok nagy részét.

A három csatornás dozimetria segítségével nagymértékben szétválasztható a zaj a dózistól, külön definiálható a dózistérkép és a hibatérkép. A $C(D)$ dózis indukálta színnek (pixel értéknek) három összetevője van, R, G, és B színcsatornákon, és mindhárom tartalmaz dózisra vonatkozó információt (9. ábra és 4. egyenlet):

$$C(D) = \{R(D), G(D), B(D)\}.$$ \hspace{1cm} (4)

Az R(D) csatorna tartalmazza a dózisinformáció legnagyobb részét, míg a hibát a B(D) és a G(D) elemzésével határozzák meg. C_{scan} – a szkenner által beolvasott pixelérték mindhárom színcsatornán (5. egyenlet), a film egy kiválasztott pozíciójában. Ez az érték összetevődik a $C(D)$ dózis okozta elszíneződésből, és a ΔC dózistól független hibából, a hibák (a szkenner hibái, por, újlenyomat stb.) elszíneződést okoznak a filmen, de ez nem a leadott dózistól származik:

$$C_{\text{scan}} = C(D) + \Delta C.$$ \hspace{1cm} (5)

Ha a C_{scan}, beolvasott pixel értékéből levonjuk a dózisra vonatkozó $C(D)$ részt, megkapjuk a hibát. Mivel a filmeken a hiba kis elszíneződést okoz a leadott dózis színváltoztatásához képest, a fent leírt különbség legkisebb értéke lesz a hiba, a következő 6. képlettel felírva:
\[|C_{\text{scan}} - C(D)| \rightarrow \min_{\Delta d} \] (6)

Az 5. és a 6. képlet segítségével szét lehet választani a beolvasott képet dózis- és hibatérképre.
\[dX_{\text{scan}} \cdot \text{a beolvasott optikai denzitás a kiválasztott színcsatornán (R,G vagy B)} \]
\[dX_{\text{scan}}(D) = dXD(D) \cdot \Delta d, \] (7)
ahol a \(dXD \) - a dózis kalibrációs függvény, a \(\Delta d \) pedig a zaj. A zaj (disturbance) \(\Delta d \) független a dózistól, de tartalmazza a szkennelés közben előforduló hibák összességét.
A 8. ábrán jól látszik, nem minden színcsatorna adja ugyanazt a dózisértéket, a vörös és a zöld csatorna eredményei nem térnek el nagyban egymástól, de a kék csatornáé igen. A \(\varphi \) függvényben páronként kivonják a jelölt színcsatorna adta dózisértékeket, így meg lehet kapni, hogy a különböző színcsatornákon mért dózisértékek mennyire térnek el egymástól, ezekkel az eltérésekkel különíthető el a hiba a dózistól.

\[\varphi(\Delta d) = (D_R - D_B)^2 + (D_B - D_G)^2 + (D_G - D_R)^2 \rightarrow \min_{\Delta d} \] (8)

10. ábra - Kalibráló görbe több színcsatornával, szét lehet választani a dózisinformációt a zajtól
Forrás: http://www.filmqapro.com/Documents/Lewis_Radiochromic_Film_20120209.pdf

Ezzel a módszerrel szétválasztható a zajt tartalmazó rész. Kapunk egy dózis térképet és egy zaj térképet a 10. ábrahoz hasonlóan, a FilmQAPro kiértékelő szoftver ezt meg is jeleníti. [7]

3.5 Kiértékelő szoftverek
A filmeket digitalizálás után többféleképpen lehet elemezni. Gyakran a kutatók saját programokat írtak például Matlab-ban, vagy képszerkesztő szoftvert használnak (Image J). A legtöbb dozimetriával foglalkozó cég saját filmdozimetriára alkalmas szoftvert hoz létre, ilyen a például a PTW Mephysto programja. A FilmQAPro célzottan csak a radiokróm filmek
elemzésére specializálódott. Filmelemzéssel foglalkozó weboldal a radiochromic.com, ebben az esetben a felhasználónak nincs rálátása az elemzés folyamatára.

Minden szoftver esetében fel kell vennünk egy kalibrációs görbét, ahol a pixel értékekhez, azaz OD-hez, ismert dózisértékeket rendelünk. Az elemezés folyamán a vizsgált film szkennelt képének pixeleihez a szoftver a sötétedésnek megfelelő dózisértéket rendel, így meghatározva az adott besugárzás dózisértéket. A zaj csökkentése érdekében a régebbi filmeknél szükséges volt egy nem exponált film beolvasása, de az új generációs filmek esetében ez nem már elhagyható.

3.5.1 PTW Mephysto

11. ábra – PTW VeriSoft képernyője négy részre van osztva, a bal oldali két ablakok egyikébe a film dóziseloszlását kell megnyitni a másikba a tervezőrendszerből exportált dóziseloszlást, a jobb alsó ablakban a gamma kritériumokat adhatjuk meg, a jobb felsőben pedig az eredmények láthatók

Ez a szoftver külön modulban kezel minden lépést: kalibrálást, dózistérkép készítést és a különböző módszerekkel készült dózistérképek összehasonlítását, ez kissé lassúja és zavarja a munkamenetet, a folyamatos mentéseket, megnyitások és dokumentálások miatt.

A dózistérképet generáló modulba, a „Film and Image Analysis”-be kell beolvasni az elemzni kívánt képet, dokumentálni a paramétereket, majd kijelölni a ROI-t, és behívnii a kalibráló fájlt, ezekből generál a program egy dózistérképet. A dózistérképen lehet profilokat mérni, illetve háromdimenziós dóziseloszlást is. A besugárzási tervek esetében a tervezőrendszerből
kiexportált kétdimenziós dóziseloszlást hasonlítottam össze a filmmel kapott dóziseloszlással, a „VeriSoft Patient Verification” modul segítségével, a szoftver kezelőfelülete a 11. ábrán látható. Az automatikus illesztő funkcióval fuzionálja a két képet. Figyelni kell arra, hogy a két dózistérkép esetében ugyanolyan nagyságrendű méretékegingből legyenek megadva a dózisértékek, és a két kép ugyanolyan irányítottságú legyen. Profilokat is össze lehet hasonlítani, és kétdimenziós gamma analízis is végezhető.

3.5.2 FilmQAPro szoftver
Előnye, hogy egy programon belül, mappákba rendezve minden, a filmmel kapcsolatos tevékenységet el lehet végezni. A kompakt kivitelezése miatt elsőre nehézkesnek tűnik a használata. A szoftverben egy modulon belül lehet kalibrálni, dózistérképet létrehozni, profilokat mérni és összehasonlítani. A szoftver kezelőablaka a 12. ábrán látható. Kalibráláshoz itt tetszőleges nagyságú területet lehet választani, és újra kalibrálásra is van lehetőség. Újítás, más szoftverekhez képest, hogy mindhárom színcsatornát használja a film elemzéséhez.

12. ábra - FilmQAPro kezelőfelülete terv összehasonlításkor. Bal oldali ablakban az egyes dokumentumok képek, és dózis térképek szerepelnek, középen a dózistérkép vagy a film látható, a jobb oldali ablakrészben pedig az alul megadott gamma kritériumnak megfelelő skálázott hibatérkép.
A klasszikus nézet szerint a kalibrációs értékekre polinom függvényt kell illeszteni, de ez nem felel meg a film alapvető tulajdonságainak, a függvény oszcillálhat az értékek körül (13. ábra). Polinom illesztéssel is lehet jó eredményeket elérni, de a racionális függvénnyel való illesztés jobban követi a film viselkedését. A függvény a következő alakban írható fel, ahol \(d_x \), az optikai denzitás a D dózison és az X hullámhosszon. \(a_x, b_x, c_x \) az illesztésből származó konstansok.

\[
d_x = -\log\left(\frac{a_x b_x D}{c_x} + D\right)
\]

(9)

A használt racionális függvény:

\[
X(D) = A + \frac{B}{D - C}
\]

(10)

ahol a D a dózis, az A, B, C paraméterek, és az \(X(D) \) a szkenner válasz.

Egy másik klasszikus nézet szerint csak a vörös csatornát kell használni a kiértékeléshez, mert az hordozza a dózisra vonatkozó legtöbb információt. Ez igaz, de Andre Micke és David F. Lewis 2011-es tanulmánya alapján megállapítható, hogy a több csatornás filmdozimétriának számos előnye van, kiküszöbölhetők vagy csökkenthetők a szkennelés folyamán keletkező bizonytalanságok, mint a film pozicionálásából, illetve az aktív rétegvetés változásából eredő hibák. Az új megközelítés alapján a radiokróm film beolvasásakor a három színcsatornára (R, G, B) különböző válaszjeleket kapunk, a szín-dózis válasz görbék is különbözőek, ez lehetővé teszi a beolvasott kép két részre bontását, egy dózisfüggő, valamint egy dózis függetlenre. [7] A dózis független rész a zajokról, artefaktumokról és az esetleges fedő réteg
vastagság eltérésekről ad információt, így a kép egy dózis és egy hiba térképre bontható fel, ez alapján működik a FilmQAPro is.

4 Mérési feladatok

4.1 Film dozimetriai tulajdonságainak vizsgálata

Bármilyen doziméter biztonságos alkalmazásának alapfeltétele, hogy ismerjük az eszköz tulajdonságait, működési mechanizmusát, előnyeit, hátrányait, és tisztában legyünk korlátáival. A filmet, hitelesített doziméterhez hasonlítva, relatív dózismérésre használhatjuk.

4.1.1 Kalibrálás

Minden csomag filmet külön kalibrálni kell, mert a gyártási folyamatukban lehetnek olyan különbségek, amik hatással vannak a filmek minőségére. A filmekkel való munkám során két kalibráló sort készítettem.

1. Táblázat: Első kalibráló sorozat dózisai

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dózis (cGy)</td>
<td>15</td>
<td>30</td>
<td>60</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>200</td>
<td>240</td>
</tr>
</tbody>
</table>

A kalibrációs sorozat 10. értéke a nulla dózis érték, amit a nem exponált film szkennelésével határozunk meg.
2. A második kalibráló sorozat 7 filmet tartalmaz, 5 cm mélységben sugaraztam be a 2. táblázatban látható dózisokkal. A filmek mérete 3,81cm × 20,03cm volt, a kalibráló sorozata 15. ábrán látható.

2. Táblázat: Második kalibráló sorozathoz tartozó dózisok és monitoregysége

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU</td>
<td>0</td>
<td>20</td>
<td>50</td>
<td>100</td>
<td>200</td>
<td>300</td>
<td>400</td>
</tr>
<tr>
<td>Dózis (cGy)</td>
<td>0</td>
<td>19,1</td>
<td>47,7</td>
<td>95,5</td>
<td>191</td>
<td>286,5</td>
<td>382</td>
</tr>
</tbody>
</table>

15. ábra - Második kalibráló sorozat "One Scan" protokoll ajánlása alapján

4.1.2 Dózisteljesítmény függés

Az ideális detektor működése független a dózisteljesítménytől, ez fontos szempont, ha olyan besugárzási tervek kiértékeléséhez akarjuk használni, amiknél folyamatosan változik a dózisteljesítmény, például IMRT vagy ívbesugárzás esetében.[14] A dózisteljesítmény függés vizsgálata esetében 4×4 cm²-es filmeket sugaraztam be szilárd vízfantomban, 6 MV fotonenergiával, 1.5 cm mélyen dózismaximumban, FBT=98.5 cm. A kísérletet három dózisteljesítményen (100, 400, 600 MU/perc) és három dózissal végeztem el (1,2, és 3 Gy).
4.1.3 Energiafüggés

A szakirodalom alapján a film energia függetlennek tekinthető a MV-os energiákon, ahogy ez a 16. ábrán is látszik. Ez az energiafüggetlenség előny, más doziméterekkel szemben, mert mérés előtt nem kell újra kalibrálni a különböző energiákon. Ha kilovoltos energían akarjuk használni, akkor új kalibráló sort kell felvenni.[14]

Az energiafüggés vizsgálata során 10×10 cm²-es nyílt mezőkkel sugaraztam be a filmeket 500 MU/perc-es dózisteljesítményen. A 4×4 cm²-es filmeket vízekvivalens fantomba helyeztem, és mindig az aktuális energiának megfelelő dózismaximumban métem. A kísérletet három energián (6, 10, 18 MV) és három dózissal végeztem el (1, 2, és 3Gy).

4.1.4 Uniformitás

Egy detektor ideális esetben egységes választ ad, pozíciótól függetlenül. A filmek uniformitását mikroszkopikus és makroszkopikus szinten lehet vizsgálni. A mikroszkopikus uniformitás az optikai denzitás fluktuációját jelenti a képpontokon, ez az érték megmutatja, hogy mekkora bizonytalansággal lehet kiolvasni az azonos dózissal besugarazott képpontok denzitását.[14]

Mikroszkopikus uniformitását hibákat okozhat a különböző rétegek struktúrája, a filmen mechanikus hatásra keletkezett törések, karcolások, illetve különböző szennyeződések (por, ujjlenyomat). A kiértékelő eszköz hibájából is adódhatnak eltérések, pl. a kiolvasó térbeli felbontása is befolyásolhatja a hiba nagyságát. Amennyiben 1µm átmérőjű porszemese kerül a film felületére, azt beolvasva egy olyan szkennerrrel, aminek a térbeli felbontása 1mm, már nem elhanyagolható hibát okoz a leképezésen. Jó felbontású olvasóval ez nem okoz számottevő eltérést.
A makroszkopikus hibák okozta egyenetlenségek létrejöhetnek az aktív réteg fizikai, illetve kémiai tulajdonságai miatt, esetleg a használt denzitométer, vagy más leképező eszköz szisztematikus hibáiból. Ezek a vár értéktől eltérő (alul vagy felül becsült) területeket hoznak létre. A makroszkopikus hibák a filmgyártás folyamán is keletkezhetnek, ezért értékük csomagolásonként változhat.

„Interference fringe effect”

A 17. ábrán látható hiba, nem lehet vágásból származó széli effektus, mert a film közepén van. A film nem teljesen párhuzamosan simult a skenner lapjára, porszem okozta légrés miatt a tapogató fény többszöri visszaverődése okozza a Newton gyűrűkhöz hasonló mintázatot. Ezek a hibák kézi denzitométerrel mérve valószínűleg nem is jelentkeznek, mert nem lehet ilyen sűrűn mintavételezni, esetleg egy-egy kiugró értéket kaphatunk.

4.1.5 Mélydózis görbe meghatározása filmdozimetriával

A filmmel lineáris gyorsító mélydózis görbéjét is meg lehet határozni, igaz nem használható abszolút doziméterként, de relatív mérésre alkalmas.

A filmet függölegesen, két 10 cm vastag vízekvivalens téglatest közé helyeztem. A forrás-film távolság 100 cm volt, 2 Gy dózissal sugaraztam be a filmet, 500 MU/perc dózisteljesítményen. A vizsgálatot 6 MV fotonenergián végeztem el kiegyenlítő szűrővel (18. ábra) és kiegyenlítő szűrő
nélkül (FFF – flattening filter free), az így kapott dovizmétriai filmeket szkenneltem, és elemeztem több kiértékelő szoftverrel, valamint denzitométerrel is megmértem a denzitást. Az eredményeket összehasonlítottam a gyorsító bemérése során kapott mérési eredményekkel, amiket ionizációs kamrával és félvezető detektorral mértünk.

4.1.6 Dózisprofilok mérése
Dózisprofilok vizsgálatát három méretben végeztem el: 5x5 cm², 10x10 cm², és 15x15 cm². Minden esetben 6 MV fotonenergiát alkalmaztam, a filmeket szilárd vízfantomban pozícionáltam, dózismértékeken.

4.1.7 A radiokróm filmek sötétedésének időfüggése

A radiokróm filmeket nem kell előhívni, besugárzás után rögtön megjelenik a dóziseloszlás, de ez még nem a végleges szín. A polimerizáció folyamatának legnagyobb része lejátszódik a besugárzás pillanatában, de az első 24 órában még változik a szín árnyalata, ezért javasolja a gyártó, hogy film elemzése előtt várjuk ki ezt az időt, hogy pontosabb eredményeket kapjunk, ugyanakkor hosszútávon (hónapok, évek) is megfigyelhető a filmek folyamatos sötétedése. Az újgenerációs filmeknél ez a jelenség enyhébb mértékben jelentkezik. Az irodalmi értékek a 19. ábrán láthatók az EBT2 és EBT3 filmek esetében 69 és 163 cGy esetében.

4.1.8 Szkenner tulajdonságainak vizsgálata

4.1.8.1 Szkenner bemelegedési effektusa
A lapolvasóknak, is mint a legtöbb elektronikai eszköznek szüksége van bemelegedési időre, hogy stabil eredményt adjon. Ez egyszerű irodai használatnál, vagy fotográfiai filmek
beolvasásakor nem fontos, de amennyiben denzitométerként használjuk, ki kell várni a bemelegedési időt a pontos eredmény érdekében.

4.1.8.2 Film pozicionálása

A film pozíciónálásának vizsgálatához négy módszert alkalmaztam:

1. Az első esetben 13 üres filmet (4 cm x 4 cm) helyeztem el a szkenner felületén, és vizsgáltam az így kapott pixelértékeket, ami alapján meghatározható a szkenner érzékenysége.

2. A második esetben egy üres filmet (20,32 cm x 25,4 cm) olvastam be négy különböző helyzetben, ugyan azt a filmet a szkenner felületének az egyes sarkaihoz illesztettem, az eredmények alapján létre tudtam hozni a szkenner érzékenységi térképét.

3. A harmadik esetben vizsgáltam, hogy változnak-e a pixelértékek az azonos filmek álló, illetve fekvő helyzetben történő szkennelése folyamán, mind üres, mind 1 Gy- el exponált film esetében, a filmek mérete 15 cm x 15 cm volt.

4.1.9 Tervek ellenőrzése

A teleterápiás besugárzási tervek minőségellenőrzése a gyors technológiai fejlődések végére nagyobb hangsúlyt kap. Míg 3D konformális tervek esetében nem szükséges minden egyes tervet külön méréssel ellenőrizni, addig a különböző IMRT technikával készült tervek dozimetria ellenőrzése nélkül nem szabad a betegkezelést megkezdeni.

Az egyéni terv ellenőrzése során a tervezőrendszerből kiesexportált dóziseloszlást hasonlítjuk össze a filmen megjelenő, ténylegesen leadott dóziseloszlással. Ilyenkor felfedezhetők az adatátviteli, vagy a besugárzó készülék hibái, pl. MLC mozgásából eredő hiba. A filmeket minden esetben szilárd vízfantomba helyeztem el, az izocentrum síkjában, a film felett 5 cm elnyelő közeg volt, míg alatta 10 cm visszaszóró közeg.

A tervek összehasonlítását gamma analízissel végeztem el, ami olyan kétparaméteres mérőszám, mely megmutatja, hogy mennyire egyezik a mért és számolt dóziseloszlás. A módszer lényege, hogy akkor tekinthető elfogadottak egy pixel értéke, ha az adott pixel dózisa közelebb van a tervezettek, mint egy előre meghatározott dóziskorlát, vagy egy megadott távolságon belül talál egy olyan pixelt a tervezett eloszlásban, amivel megegyezik a mért érték, vagyis \(\gamma_{norm} \leq 1 \)

Gamma térkép függvénye \(\gamma_{norm} \), meghatározható, mint:
Normált differenciál dózis:
\[
\Delta D_{\text{norm}} = \left| \frac{D_{\text{dose}} - D_{\text{plan}}}{D_{\text{ref}} \varepsilon_{\text{dose}}} \right|
\]
(11)

ahol a referencia dózis D_{ref}, ami lehet a terven szereplő maximális dózis (D_{max}) a frakció dózisa (D_{ref}), vagy a terv dózisa D_{plan}.

A normált távolság:
\[
\Delta L_{\text{norm}} = \left| \frac{D_{\text{plan}} - L_{\text{dose}}(\Delta D_{\text{norm}} \leq 1)}{D_{\text{ref}} \varepsilon_{\text{dist}}} \right|
\]
(12)

Ahol az L_{plan}, egy adott pont értéke a képen. A ΔL meghatározásához meg kell keresni a dózis térképen azt a L_{dose} helyet, ahol a ΔD_{norm} a legkisebb.

A normált gamma térkép függvény:
\[
\gamma_{\text{norm}} = \sqrt{\frac{\Delta D_{\text{norm}}^2 (L_{\text{dose}}) + \Delta L_{\text{norm}}^2}{D_{\text{ref}} \varepsilon_{\text{dist}}}}
\]
(13)

Ezt minden ($\varepsilon_{\text{dose}}, \varepsilon_{\text{dist}}$) szám párra ki lehet számolni, ezek gamma kritériumnak nevezzük. A dózis toleranciát százaléktban kell megadni, a távolságot mm-ben.

A kiértékelő szoftverek a gamma kritériumok és a küszöbdózis megadásával kiszámolják a gamma-indexet. Gamma kritériumnak általában 3% és 3mm-es értékeket alkalmazzuk, míg szigorúbb esetekben 2% és 2mm, elemzéskor általában a 10%-nál kisebb dózisok elhanyagolhatók, ezt nevezik küszöbdózisnak. [13]

Általában a tervek ellenőrzéséhez a FilmQAPro által ajánlott “OneScan” kalibrálási protokollt használtam, ami lehetővé teszi a filmek újrakalibrálását, két új film segítségével. Az egyik filmet nem kell exponálni, ez lesz az új nulla érték. A másik filmet 5cm mélyen, fantomban 10 cm ×10 cm-es nyílt mezővel kell besugarazni az adott tervben szereplő maximális dózisnál legalább 15-20%-al nagyobb értékkel, esetünkben ez 400 cGy volt, amint ez a 20. ábrán látható. Ezt a két új filmet, valamint a dózisoszlást tartalmazó filmet egyszerre kell beszkennelni, így újra lehet kalibrálni a meglévő görbékken, amivel pontosabb eredmény érhetünk el. Ebben az esetben akár 15 percvel a besugárzás után is kiértékelhetjük a filmet, nem kell megvárni a 24 órát.

24
A munkámban a következő sugárterápiás terveket ellenőriztem:

a. Nyílt mezős ellenőrzés
b. Kismedence, 4 mezős „boksz” konformális terv,
c. Egy mezős IMRT „Sliding Window” gantry 0 fokos szögállásánál
d. „Sliding Window” IMRT terv
e. Ívbesugárzást - RapidArc - a kezelés alatt a gantry és az MLC is folyamatosan mozognak.[7], [10]
f. Sztereotaxiás terv tüdő tumorra
g. Szimultán integrált boost (SIB), ebben az esetben a beteg egy frakción belül kapja meg az elektív térfogat és a szűkítés (boost) dózisát is.

Mindkét kiértékelő szoftverrel elvégeztem az összehasonlítást.

5 Eredmények és megbeszélés

5.1 Film tulajdonságai
5.1.1 Kalibrálás

a. Az első kalibrációs görbére kiolvasása denzitométerrel

A nulla értéket egyik esetben a denzitométer gyári kalibráló sorozatának 0 pontjához adtam meg, másik esetben pedig egy üres radiokróm filmet olvastam be. Az első esetben nagy eltérést tapasztaltam a referencia dózisokhoz képest, tehát megállapítható, hogy ez a kalibrálási mód nem használható a radiokróm filmek kiértékelésére. A második módszer esetében kilenc referencia filmet használtam, a 2x2 cm²-s filmek mindegyikét 5 pontban mértemi le. Az eredményeket a 3. táblázat tartalmazza:
Táblázat: A második módszerrel kapott eredmények denzitométer esetében

<table>
<thead>
<tr>
<th>Filmek sorszáma</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Átlag OD</td>
<td>0,03</td>
<td>0,05</td>
<td>0,09</td>
<td>0,13</td>
<td>0,15</td>
<td>0,18</td>
<td>0,21</td>
<td>0,23</td>
<td>0,26</td>
</tr>
<tr>
<td>Ismert dózisok (cGy)</td>
<td>15</td>
<td>30</td>
<td>60</td>
<td>100</td>
<td>120</td>
<td>150</td>
<td>180</td>
<td>200</td>
<td>240</td>
</tr>
<tr>
<td>Illesztett egyenlet alapján számolt dózis (cGy)</td>
<td>8,11</td>
<td>27,65</td>
<td>64,78</td>
<td>101,90</td>
<td>121,44</td>
<td>154,66</td>
<td>180,07</td>
<td>199,61</td>
<td>232,83</td>
</tr>
<tr>
<td>Eltérés</td>
<td>6,89</td>
<td>2,35</td>
<td>-4,78</td>
<td>-1,90</td>
<td>-1,44</td>
<td>-4,66</td>
<td>-0,07</td>
<td>0,39</td>
<td>7,17</td>
</tr>
<tr>
<td>Hiba (%)</td>
<td>45,96</td>
<td>7,84</td>
<td>-7,96</td>
<td>-1,90</td>
<td>-1,20</td>
<td>-3,11</td>
<td>-0,04</td>
<td>0,20</td>
<td>2,99</td>
</tr>
</tbody>
</table>

1 Gy feletti értékekre illesztés után

<table>
<thead>
<tr>
<th>Számolt</th>
<th>-5,23</th>
<th>15,87</th>
<th>55,97</th>
<th>96,07</th>
<th>117,17</th>
<th>153,05</th>
<th>180,48</th>
<th>201,59</th>
<th>237,46</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eltérés az ismerttől</td>
<td>20,23</td>
<td>14,13</td>
<td>4,03</td>
<td>3,93</td>
<td>2,83</td>
<td>-3,05</td>
<td>-0,48</td>
<td>-1,59</td>
<td>2,54</td>
</tr>
<tr>
<td>Hiba (%)</td>
<td>134,8</td>
<td>47,10</td>
<td>6,72</td>
<td>3,93</td>
<td>2,36</td>
<td>-2,03</td>
<td>-0,27</td>
<td>-0,79</td>
<td>1,06</td>
</tr>
</tbody>
</table>

Az optikai denzitások átlag értékeire egyenest illesztve, és az erre felirható egyenletből visszaszámolt dózisértékek 1 Gy felett ±3 %-os hibával visszaadják a referenciadózisokat, az 1 Gy-nél kisebb értékek esetében az adott módszer nem elfogadható. A kalibrációs görbét meghibáztattak csak az 1 Gy feletti értékekre illesztni, így a hiba ±0,5 %-kal csökkent (21. ábra).

![Teljes kalibrálósorozatra illesztve](image1.png)

\[y = 976,59x - 22,452 \]

![1 Gy feletti kalibráló filmekre illesztve](image2.png)

\[y = 1036,5x - 34,691 \]

21. ábra - Egyenessel illesztett kalibrációs görbe, denzitométerrel mért értékekre, teljes sorozattal és 1 Gy felettiekkel
b. Filmek szoftveres kiértékelése

4. Táblázat: Második kalibrációs görbe illesztett értékei, Mephysto PTW-vel

<table>
<thead>
<tr>
<th>Jelölés</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel érték</td>
<td>41523,5</td>
<td>40137,1</td>
<td>38551,5</td>
<td>35963,8</td>
<td>31959,5</td>
<td>28916,8</td>
<td>26308,7</td>
</tr>
<tr>
<td>Dózis (cGy)</td>
<td>0</td>
<td>19,1</td>
<td>47,7</td>
<td>95,5</td>
<td>191</td>
<td>286,5</td>
<td>382</td>
</tr>
</tbody>
</table>

5. táblázat - Második kalibrációs görbe illesztett értékei, FilmQAPro-val.

<table>
<thead>
<tr>
<th>Sor-szám</th>
<th>Elnyelt dózis (cGy)</th>
<th>R</th>
<th>G</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,0</td>
<td>65,3</td>
<td>66,6</td>
<td>40,8</td>
</tr>
<tr>
<td>1</td>
<td>19,1</td>
<td>62,1</td>
<td>64,7</td>
<td>40,1</td>
</tr>
<tr>
<td>2</td>
<td>47,7</td>
<td>58,4</td>
<td>62,5</td>
<td>39,5</td>
</tr>
<tr>
<td>3</td>
<td>95,4</td>
<td>52,8</td>
<td>59,0</td>
<td>38,5</td>
</tr>
<tr>
<td>4</td>
<td>190,8</td>
<td>44,5</td>
<td>53,1</td>
<td>36,6</td>
</tr>
<tr>
<td>5</td>
<td>286,2</td>
<td>39,0</td>
<td>48,5</td>
<td>35,2</td>
</tr>
<tr>
<td>6</td>
<td>381,6</td>
<td>34,5</td>
<td>44,1</td>
<td>33,5</td>
</tr>
</tbody>
</table>
6. Táblázat: A FilmQAPro által használt 3. egyenlet kalibrációs függvényhez használt paraméterek

<table>
<thead>
<tr>
<th>A paraméter</th>
<th>R csatorna</th>
<th>G csatorna</th>
<th>B csatorna</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0,52</td>
<td>-0,006</td>
<td>0,139</td>
</tr>
<tr>
<td>B paraméter</td>
<td>2,188</td>
<td>5,165</td>
<td>2,921</td>
</tr>
<tr>
<td>C paraméter</td>
<td>-3,649</td>
<td>-7,701</td>
<td>-10,773</td>
</tr>
</tbody>
</table>

A PTW Mephysto szoftver polinom függvényt illeszt, ezért nem lehetnek túl nagy lépésközök a kalibrációs dózisok között, mert oszcillálhat a görbe, valamint a szoftver nem választja szét a szín csatornákat, hanem a megnyitott képet szürkeskálázza, és azt elemzi.

FilmQAPro az előzőekben már ismertetett polinom függvényt illeszi, és mindhárom színcsatornát használja a kiértékelésnél.

5.1.2 Dózisteljesítmény függés
Denzitométerrel történő mérés során, minden filmet öt pontban lemértem, a 24a. ábrán látható átlagértékeket kaptam. FilmQAPro szoftverrel kapott értékek a 24b. ábrán találhatók, a két elemzés között minimális az eltérés.

![24. ábra – a. dózisteljesítmény függés denzitométeres vizsgálatának eredményei. b. Dózisteljesítmény függés FilmQA Pro-val kiértékelve](image-url)
5.1.3 Energiafüggés

A 25/a. ábrán a denzitométerrel mért átlagértékek láthatók, a mérés során, a nullázás üres filmre történt, és minden film öt pontban volt lemerve. A FilmQAPro-val mért értékeken (25/b. ábra) látható, hogy a film megavoltos nagyságrendben gyakorlatilag energia független.

25. ábra – a. energiafüggés denzitométer használata esetében, MV-os foton energiákon b. energiafüggés FilmQAPro-val kiértékelve

5.1.4 Uniformitás

26. ábra – Newton gyűrűk által okozott hiba vizsgálata
Table: A table showing the effects of Newton rings caused by dose fluctuations tabulated for 1 Gy dose using PTW Mephysto-val.

<table>
<thead>
<tr>
<th>Forrás</th>
<th>Átlag (cGy)</th>
<th>Std Deviation (±cGy)</th>
<th>Minimum (cGy)</th>
<th>Maximum (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vörös</td>
<td>104</td>
<td>4</td>
<td>93</td>
<td>116</td>
</tr>
<tr>
<td>Zöld</td>
<td>111</td>
<td>5</td>
<td>97</td>
<td>124</td>
</tr>
<tr>
<td>Kék</td>
<td>107</td>
<td>3</td>
<td>97</td>
<td>118</td>
</tr>
</tbody>
</table>

A dose analysis from the RGB channel with the red channel showing the most sensitive for dose, but also containing dose deviation errors. The blue channel is the least sensitive to dose deviations, while the green channel shows the largest deviation for the released dose, its sensitivity can be compared to the red channel.

The literature generally recommends analyzing red and blue channels, but FilmQA Pro takes into account all three channel values as shown in Table 7.

Figures:
27. Figure - Scanning-induced Newton ring effects on dose fluctuation, PTW Mephysto-val.
28. Figure - The 26th figure's yellow line profile analysis using FilmQA Pro.
A Newton gyűrű mentes részen mérve (26. ábra sárga vonala) FilmQA Pro-val a 28. ábrán látható eredményeket kaptam, az eltérések mértékét a 8. táblázat tartalmazza a különböző színcsatornákon.

8. Táblázat: Artefaktum mentes (28. ábra sárga vonal mentén mért) profil elemzésével kapott eredmények

<table>
<thead>
<tr>
<th>Forrás</th>
<th>Átlag (cGy)</th>
<th>Std Deviation (cGy)</th>
<th>Minimum (cGy)</th>
<th>Maximum (cGy)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>106</td>
<td>2</td>
<td>100</td>
<td>119</td>
</tr>
<tr>
<td>G</td>
<td>109</td>
<td>3</td>
<td>102</td>
<td>135</td>
</tr>
<tr>
<td>B</td>
<td>108</td>
<td>2</td>
<td>102</td>
<td>126</td>
</tr>
</tbody>
</table>

Az előbbi sárga vonal mentén mért értékek a PTW Mephysto szoftver segítségével a 29. ábrán látható eredményeket adta.

Besugárzási terv összehasonlításnál ezek a képhibák nem okoznak nagyon nagy dozimetria eltéréseket a gamma analízis eredményében, de törekedni kell a szkennelés során, hogy minél kevesebb hibát okozzunk.

Az EBT3 típusú filmmel kevesebb gyűrű hiba keletkezik beolvasás során, mert a film szimmetrikus felépítésű, és szkenneléskor a „Matte Polyester” fedőrétegbe a porszemmel benyomódnak a külső rétegbe, nem alakíthatot a légrést szkennelés során.

30. ábra - EBT 3 típusú film fedőrétege csökkenti a Newton gyűrűk kialakulását, a porszemmel benyomódnak a külső rétegbe, nem alakíthatot a légrést szkennelés során

29. ábra - A Mephysto program nem tudja szétválogatni az egyes színcsatornákat.
5.1.5 Mélydózis görbék

1. 6 MV fotonenergia mélydózis görbéje

31. ábra – Film dozimetriával, ionizációs kamrával és félvezető detektorral mért mélydózis-görbék összehasonlítása 6 MV fotonenergia esetében

32. ábra - Mélydózis görbe FilmQAPro-val elemezve 6 MV fotonenergián
Az összes görbét nem tudtam egy grafikonon megjeleníteni, a kiértékelő szoftverek korlátozásai miatt (31. és 32. ábra), de a 9. táblázatban összehasonlítottam az egyes görbék szakaszait.

9. táblázat - Mélydózis görbék összehasonlítása 6 MV fotonenergia esetében

<table>
<thead>
<tr>
<th>Paraméterek</th>
<th>Ionizációs kamra</th>
<th>Félvezető detektor</th>
<th>Film PTW</th>
<th>Film QAPro</th>
<th>Megj.</th>
</tr>
</thead>
<tbody>
<tr>
<td>R100 [mm]</td>
<td>14,01</td>
<td>13,01</td>
<td>14,63</td>
<td>14,6</td>
<td>dózismaximum mélység</td>
</tr>
<tr>
<td>R80 [mm]</td>
<td>64,56</td>
<td>59,66</td>
<td>64,49</td>
<td>63</td>
<td>80%-os dózis mélysége</td>
</tr>
<tr>
<td>R50 [mm]</td>
<td>151,33</td>
<td>138,76</td>
<td>135,23</td>
<td>137,7</td>
<td>50%-os dózis mélysége</td>
</tr>
<tr>
<td>D200 [%]</td>
<td>38,03</td>
<td>34,49</td>
<td>46,68</td>
<td>74,2 (rövid a film)</td>
<td>Dózis érték 200 mm mélységben</td>
</tr>
</tbody>
</table>

2. Mélydózisgörbe vizsgálata kiegyenlítő szűrő hiánya esetében (FFF - Flettening Filter Free)

6 MV fotonenergián
A film és az ionizációs kamra összehasonlítása a 33. ábrán látható, a FilmQAPro-val kapott görbe a 34. ábrán található.
Kiegyenlítő szűrő nélküli esetben már nagyobbak az eltérések, de még mindig jól követik a referencia görbét. A 33. és 34. ábra mélydózis-görbéinek számszerű összehasonlítását a 10. táblázat tartalmazza. 35. ábrán látható a kiegyenlítő szűrő hatása különböző mélységekben.
10. Táblázat: 6 MV-FFF-es mélydózis görbék összehasonlításának eredményei

<table>
<thead>
<tr>
<th>Paraméterek</th>
<th>Ionizációs kamra</th>
<th>Film PTW</th>
<th>Film QAPro</th>
<th>dőzismaximum mélység</th>
</tr>
</thead>
<tbody>
<tr>
<td>R100 [mm]</td>
<td>13,01</td>
<td>16,14</td>
<td>11,5</td>
<td></td>
</tr>
<tr>
<td>R80 [mm]</td>
<td>59,66</td>
<td>72,9</td>
<td>69,5</td>
<td>80%-os dózis mélysége</td>
</tr>
<tr>
<td>R50 [mm]</td>
<td>138,76</td>
<td>132,68</td>
<td>142</td>
<td>50%-os dózis mélysége</td>
</tr>
<tr>
<td>D200 [%]</td>
<td>34,49</td>
<td>46,68</td>
<td>67</td>
<td>Dózis érték 200 mm mélységben</td>
</tr>
</tbody>
</table>

5.1.6 Dózisprofilok

A 10 x 10 cm²-es mező dózisprofilját összehasonlítottam a gyorsító bemérésekor, ionizációs kamrával és félvezető detektorral kapott értékekkel, az eredmények a 36. és a 37. ábrán láthatók. Az ékelt mező vizsgálatához 10 cm × 15 cm-es nyílt mezőt használtam 30 fokos ékkel, szilárd vízfantomban 5 cm mélységbe helyeztem el a filmet és 10 cm elnyelő közeget tettem alá. A filmmel kapott profilt a tervezőrendszerből exportált profilal hasonlítottam össze.
36. ábra – a. 10×10 cm²-es nyílt mező X irányú profiljának összehasonlítása ionizációs kamrával és félvezető detektorral mért értékekkel, b. ékelt mező profiljának (vastag vonal) összehasonlítása a tervezőrendszerből exportált adatokkal (vékony vonal).

37. ábra – A 5×5 cm²-es (bal) és a 15×15 cm²-es (jobb) nyílt mezők X irányú profilja. Az 5×5 cm²-es mező középen levő kicsúcsosodását, és a 15×15 cm²-es bemélyedését is a kompenzátor szűrő hatása okoz. A kisebb mező esetében nem szűr eléggé, nagy mezők esetében viszont túlszűr.
5.1.7 Sötétedés, időfüggés

A film hosszú távú sötétedésének megfigyelése nem tervezett vizsgálat volt. Hét hónappal a kalibráló filmek első szkennelése után, újra beolvastam ugyanazt a sorozatot és a 38. ábrán látható, meglehetősen nagy eltéréseket tapasztaltam.

![Film sötétedése hét hónap alatt](image.png)

38. ábra - Hét hónap alatt bekövetkező film sötétedése

11. Táblázat: Az első kalibráló filmen hét hónap alatt bekövetkezett sötétedés.

<table>
<thead>
<tr>
<th>Alkalmazott dózis (cGy)</th>
<th>0</th>
<th>15</th>
<th>30</th>
<th>60</th>
<th>100</th>
<th>120</th>
<th>150</th>
<th>180</th>
<th>200</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hét hónapos eltérés</td>
<td>4%</td>
<td>4%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
<td>6%</td>
</tr>
</tbody>
</table>

A nagyobb dózist kapott filmeknél nagyobb volt a sötétedés aránya (11. táblázat). A sötétedés 100 cGy-es dózisnál 5 cGy-es dózisnövekedést okozott, 200 cGy-nél 12 cGy-el, és 240 cGy-nél 14,4 cGy-el kaptam nagyobb értékeket. Az eredmények alapján megállapítható, hogy a filmek kiértékelésénél figyelni kell arra, hogy ne legyen túl régi a kalibráló sorozat. Ami igazából meglepő volt, hogy a nem besugarazott, sötét helyen tartott film is 4%-kal sötétebb lett 7 hónap alatt.
5.2 Szkenner tulajdonságai

Film beolvasáshoz a szkenner fedőlapjáról el kell távolítani a fehér műanyaglapot, amit lapolvasáshoz használnak. Beállítottam a gyártó által ajánlott szkennelési paramétereket: Professzionális mód, Átlátszó kép, pozitív film, 48bit RGB. A legfontosabb, hogy minden színkorrekció ki kell kapcsolni. TIFF formátumban kell elmenteni a képeket.

A filmek digitalizálása során a legnagyobb problémát a szkenner felületének tisztántartása okozta, mert gyűrűs artefaktumot már egy porszem is okozhat. Portalanításhoz a szkenner felületét alkoholos törlőkendővel törölt és „szöszmentes” kendővel szárítottam meg, a filmek teljes felületét nem ajánlott alkohollal tisztítani, igaz nem károsítja a filmet, de csíkosan szárad, ami további hibákat okoz, ezért ezeket csak kendővel szabad tisztítani. A szkenner üveg felületén és a filmek is teljesen száraznak kell lennie beolvasáskor.

a. **Szkenner felmelegedési effektusa**

Számottevő instabilitást nem tapasztaltam az általam használt szkennernél, de minden estben az eszköz bekapcsolása után várta 10 percet és az első három szkennelést nem mentettem el.

b. **Film felületéten homogenitása és a filmek pozicionálása**

A film sorszáma	OD	Átlagtól való eltérés	%
1 | 0.181 | 0.011 | 5.84%
2 | 0.203 | -0.011 | -5.60%
3 | 0.202 | -0.010 | -5.08%
4 | 0.192 | 0.000 | 0.12%
5 | 0.19 | 0.002 | 1.16%
6 | 0.186 | 0.006 | 3.24%
7 | 0.185 | 0.007 | 3.76%
8 | 0.184 | 0.008 | 4.28%
9 | 0.19 | 0.002 | 1.16%
10 | 0.19 | 0.002 | 1.16%
11 | 0.204 | -0.012 | -6.12%
12 | 0.194 | -0.002 | -0.92%
13 | 0.198 | -0.006 | -3.00%
Átlag | 0.192 |

A 13 darab kis négyzet alakú filmet egyenletesen próbáltam elosztani a szkenner üveg felületén (39. ábra). A 12. táblázat tartalmazza az egyes filmek optikai denzitását, a 4%-nál kisebb hibával rendelkező pontok zölddel kiemelve.
Második esetben, a négy sarokba helyezett filmekből, készítettem egy optikai denzitás térképet. Mindkét vizsgálat igazolja a középre pozícionálás fontosságát, mert a középső területen kívül 4%-os az átlagtól való eltérés (zöld régió). A második esetben szemléletesen a széleknél való eltérés. Figyelembe kell venni, hogy a felső optikai denzitásban eltérő sáv szélesebb megközelítőleg 8 cm, míg az alsó ettől valamivel kevesebb kb. 7 cm. A 40a. kép közepén jelentkező kereszt alakú hibát, a film szélhatása okozta. Egy középre helyezett film (40b. ábra) homogén képet ad, ebben a skálázásban egységesen lila színű a kijelzés.

40. ábra – a. teljes szkennelési felület inhomogenitás térképe. b. szkenner közepére helyezett film OD térképe

Vízszintes és függőleges irányú profil egy üres, középre helyezett filmen, a 41. ábrán látható. Az adott nagytáson az eltérések jelentősnek tűnnek, de számszerűsítve vízszintes irányban az eltérés átlagosan 1 cGy, míg függőlegesen 1.2-1.5 cGy. Carrasco 200 cGy dózis esetében 5.1 cGy eltérést mért.

A szkenneléshez nagy alapterületű, A3-as lapolvasó szükséges, azért hogy a közepén legyen megfelelő nagyságú homogén terület. Ha nagyobb méretű filmet szeretnénk elemezni, ami
lefedi az inhomogén részt is, akkor érdemes korrekcións mátrixot létrehozni, amivel korrigálni lehet a kapott értékeket.

Igyekeznünk kell a filmet a beolvasási felületen az oldalakkal párhuzamosan elhelyezni, mert a dőlés szög fokonként 0,05%-os hibát okoz a válsz jelben, ez dózisban 0,15%-os eltérést eredményez.

A film **mindkét oldal (A és B)** használhatóságának eredményei az 13. táblázatban láthatók, a besugárzás alatt az A oldal volt a nyaláb felé. Megállapítható hogy nincs jelentős különbség a két oldal között optikai denzitás szempontjából, de a gyártó azt javasolja, hogy mindig egyforma pozícióban használjuk a filmet.

Fekvő versus álló orientációval kapott eredményeknél már van különbség, egyes esetekben abszolút dózisban mérve cGy-es nagyságrendűek az eltérések, a dózis növekedésével nő az eltérés is, ennek oka a polimer lánccsal elhelyezkedése, különböző pozícióban máshogy verik vissza a leolvasó lámpa fényét. Fontos, hogy következetesek legyünk az orientáció megválasztásakor, a gyártók és a szakirodalom is a fekvő (landscape) pozíciót javasolja.

A felsorolt tulajdonságok ismeretében létre kell hozni beolvasási protokollt, ami tetszőlegesen megismételhető és mindig ugyanazt az eredményt adja.
13. Táblázat: - Film használhatóságának optikai denzitásai különböző pozíciókban az egyes csatornák esetében

<table>
<thead>
<tr>
<th></th>
<th>Üres film, fekvő helyzetben, A oldal felül (OD)</th>
<th>Üres film, fekvő helyzetben B oldal felül, (OD)</th>
<th>1Gy-el besugarazott film, fekvő helyzetben A oldal felül (OD)</th>
<th>1Gy-el besugarazott film, fekvő helyzetben B oldal felül (OD)</th>
<th>Üres film álló helyzetben, A oldal felül</th>
<th>1Gy álló helyzetben, A oldal felül</th>
</tr>
</thead>
<tbody>
<tr>
<td>R csatorna átlag érték</td>
<td>0,192</td>
<td>0,192</td>
<td>0,291</td>
<td>0,291</td>
<td>0,169</td>
<td>0,26</td>
</tr>
<tr>
<td>R (±SD)</td>
<td>2,169</td>
<td>2,29</td>
<td>2,561</td>
<td>2,551</td>
<td>2,153</td>
<td>2,523</td>
</tr>
<tr>
<td>R min</td>
<td>0,3</td>
<td>0,257</td>
<td>0,319</td>
<td>0,363</td>
<td>0,267</td>
<td>0,308</td>
</tr>
<tr>
<td>R max</td>
<td>0,18</td>
<td>0,182</td>
<td>0,277</td>
<td>0,277</td>
<td>0,156</td>
<td>0,25</td>
</tr>
<tr>
<td>G csatorna átlag érték</td>
<td>0,181</td>
<td>0,181</td>
<td>0,235</td>
<td>0,236</td>
<td>0,161</td>
<td>0,214</td>
</tr>
<tr>
<td>G (±SD)</td>
<td>2,231</td>
<td>2,339</td>
<td>2,56</td>
<td>2,618</td>
<td>2,249</td>
<td>2,592</td>
</tr>
<tr>
<td>G min</td>
<td>0,284</td>
<td>0,248</td>
<td>0,266</td>
<td>0,309</td>
<td>0,255</td>
<td>0,258</td>
</tr>
<tr>
<td>G max</td>
<td>0,17</td>
<td>0,17</td>
<td>0,225</td>
<td>0,224</td>
<td>0,149</td>
<td>0,203</td>
</tr>
<tr>
<td>B csatorna átlag érték</td>
<td>0,393</td>
<td>0,393</td>
<td>0,417</td>
<td>0,418</td>
<td>0,375</td>
<td>0,396</td>
</tr>
<tr>
<td>B (±SD)</td>
<td>2,328</td>
<td>2,446</td>
<td>2,676</td>
<td>2,711</td>
<td>2,352</td>
<td>2,663</td>
</tr>
<tr>
<td>B min</td>
<td>0,5</td>
<td>0,464</td>
<td>0,447</td>
<td>0,49</td>
<td>0,476</td>
<td>0,443</td>
</tr>
<tr>
<td>B max</td>
<td>0,364</td>
<td>0,361</td>
<td>0,391</td>
<td>0,39</td>
<td>0,35</td>
<td>0,371</td>
</tr>
</tbody>
</table>

5.3 Sugárterápiás tervek ellenőrzése

1. Nyílt mezők ellenőrzése - A 42. ábrán látható filmen 3 különböző nagyságú mezőt exponáltunk egymásra, az egyes mezőkből leadott dózis 0,5 Gy (50 MU) volt, és az egyes mezők leadás között eltelt idő 1 perc volt. A film 6 MV fotonenergiával, 500 MU/perc dózis teljesítménnyel volt besugarazva, három mezőméreten: 20 x 7 cm², 15 x 5 cm², 10 x 3 cm². Az elemzések a 43 és 44. ábrán láthatók.

2. 3D konformális terv - a dóziseloszlást optimalisán illeszi a háromdimenziós célterület alakjára, miközben minimálisra csökkenti az ép szövetek dóziserejlését. Ebben az esetben egy kismedencei céltérfogat van ellátva négy mezős „box” mezőelrendezésben (Besugárzási irányok: 0°, 90°, 180°, 270°). Az elemzés a 45. ábrán látható.

3. Dinamikus IMRT, vagy az ún. „sliding window” technika - a sugárkezelés alatt az MLC változó sebességgel folyamatosan mozog, miközben különböző alakú mezőket hoz létre, a gentry megadott szögállásainál. Az eredmények a 46 és 47. ábrán láthatók.
4. Forgóíves IMRT technika (intensity modulated arc therapy - IMAT, esetünkben RapidArc), ami a dinamikus IMRT továbbfejlesztése. Sugárkezelés közben az MLC-k mozgása mellett a gantry is forog. A gantry forgási sebességének, az MLC-k mozgásának és a dözisteljesítménynek a változtatásával hozható létre a dóziseloszlás. A film elemzése az 48. ábrán látható.

6. Simultaneous-integrated boost (SIB) – A sugárterápiában, sok esetben az elektív céltérfogat besugárzása után szűkitett (boost) céltérfogatra, azaz a tumorágyra is adnak külön kezelést. Klasszikus esetben a beteg először az elektív céltérfogat kezelését kapja, majd új tervként sugarazzák a tumorágyat. A SIB kezelések során az elektív céltérfogatra és a szűkítésre vonatkozó mezőket egy frakció belül kapja meg a beteg, ezzel az eljárással lerövidíthető a kezelés időtartama. A filmmel kapott eredmények az 50. és 51. ábrán láthatók.
5.3.1 Nyílt mezős terv ellenőrzése

42. ábra – Három nyílt mező egymásra exponálva

43. ábra - Három különböző méretű, egymásra exponált nyílt mező, X irányú profilja (a) és háromdimenziós dőzisfelépülése (b) PTW Mephysto-val elemezve

44 ábra - Három különböző méretű, egymásra exponált nyílt mező, FilmQAPro-val elemzett, X irányú profil és statisztikai eloszlás
5.3.2 Konformális besugárzás terv ellenőrzése

45. ábra – Konformális terv összehasonlításának eredményei. PTW Mephysto-val: a. szürkeskálás kép az eredeti dóziseloszlást mutatja, a színes vonalak a film izodózisgörbét, b. X irányú profil, c. Y irányú profil, d. átlós irányú profil, (a világoskék, zajosabb vonalak a filmezre vonatkoznak). e. FilmQAPro-val kapott izodózisgörbék összehasonlítása (a vékonyabb vonal filmezre vonatkozik), f. az összehasonlítási hiba térkép.
5.3.3 Egy IMRT mező terve ellenőrzése

46. ábra - egy IMRT mező összehasonlításának eredményei. Mephysto PTW-vel:

a. sötét vörös pöttyök hibákat jeleznek,
b. X átlós irányú profil ,
c. Y irányú profil,
d. X irányú profil, (a világoskék, zajosabb vonalak a filmre vonatkoznak.) e. FilmQAPro-val kapott izodózisgörbék összehasonlítása (a vékonyabb vonal a filmre vonatkozik), f. az összehasonlítás hiba térképe.
5.3.4 IMRT besugárzási terv ellenőrzés

![Image of a dose distribution map]

47. ábra - IMRT terv összehasonlításának eredményei. PTW Mephysto-val: a. szürkeskálás kép az eredeti dóziseloszlást mutatja, b. X irányú profil, c. Y irányú profil, d. átlós irányú profil, (a világoskék, zajosabb vonalak a filmre vonatkoznak.) e. FilmQAPro-val kapott izodózisgörbék összehasonlítása (a vékonyabb vonal a filmre vonatkozik), f. az összehasonlítás hiba térképe. A besugárzott céltérfogat épp hogy ráfért a filmre, jobb oldali nagyobb hiba a szélhatás miatt van.
5.3.5 Rapid ARC besugárzási terv ellenőrzése

48. ábra - RapdArc terv összehasonlításának eredményei. PTW Mephysto-val: a. szürkeskáladás kép az eredeti dózisellátást mutatja, a színes vonalak a film izodózisgörbét, b. X irányú profil, c. Y irányú profil, d. átlós irányú profil, (a világoskék, zajosabb vonalak a filmre vonatkoznak.) e. FilmQAPro-val kapott izodózisgörbék összehasonlítása (a vékonyabb vonal a filmre vonatkozik), f. az összehasonlítási hiba térkép.
5.3.6 SBRT besugárzási terv ellenőrzése

49. ábra – a. ábra filmen megjelenő dóziseloszlás, b. tervezőrendszerből exportált dózis térkép, c. FilmQAPro-val összehasonlított dóziseloszlás (vékony vonal a filmen dóziseloszlása), d. hibatérkép

5.3.7 SIB besugárzási terv ellenőrzése

50. ábra - a. filmen megjelenő dóziseloszlás, b. tervezőrendszerből exportált dózis térkép.
5.4 Gamma analízis eredményei:

A két kiértékelő szoftvert összehasonlítható arra a következtetésre jutottam, hogy a FilmQAPro tört függvényel illesztett kalibrálós sorozata és több színcsatornás elemzője, amivel szétválasztja a filmet egy dózistérképre és hibatérképre, minden esetben jobb eredményt ad, mint a PTW Mephysto egy csatornás elemzése (14. és 15. táblázat). Amíg a PTW Mephystonál lehetőség van automatikus illesztésre („Automatic alignment”), addig a FilmQAPro izocentrumra való illesztése nem mindig tökéletes, de még kézi fuzionálással is jobb eredményeket kaptam.

14. Táblázat – A PTW Mephysto kiértékelő szoftverrel kapott eredmények, a tervezőrendszerből exportált dózis térkép és a film dóziseloszlásának összehasonlítására, dózismaximumra és lokális dózisra normálva.
15. Táblázat - A FilmQAPro szoftverrel a két dózistérkép összehasonlításának eredményei eredeti kalibráló sor használatával és a "One Scan" protokollnak megfelelő újrakalibrálás után, dózismaximumra normálva.

<table>
<thead>
<tr>
<th>Konformális</th>
<th>Egy IMRT mező</th>
<th>IMRT</th>
<th>RapidARC</th>
<th>SBRT</th>
<th>SIB</th>
</tr>
</thead>
<tbody>
<tr>
<td>3%, 3mm</td>
<td>2%, 3mm</td>
<td>3%, 2mm</td>
<td>2%, 2mm</td>
<td>3%, 3mm</td>
<td>2%, 2mm</td>
</tr>
<tr>
<td>Eredeti kalibráló sor</td>
<td>100%</td>
<td>98,9%</td>
<td>99,7%</td>
<td>84,0%</td>
<td>93,6%</td>
</tr>
<tr>
<td>one scan</td>
<td>99,9%</td>
<td>98,5%</td>
<td>93,4%</td>
<td>75,7%</td>
<td>100%</td>
</tr>
</tbody>
</table>

A FilmQAPro-nál lehetőség van újrakalibrálásra, ilyenkor egy nulla-dózisú (exponáltlan) és egy nagy dózissal besugarazott filmet kell beszkennelni a tervvel együtt. Ezzel a módszerrel javíthatunk az eredményeken, mivel a kisdózisú területek dózis meghatározása pontosabb lesz, ha a besugarazott film, saját exponáltlan részére korrigálunk. Az újrakalibrálással kapott eredményeket a 16. táblázat tartalmazza.

A nagy célterfogatú tervek esetében rosszabb eredményeket kaptunk, mivel a film kis mérete miatt a célterfogat alig fért rá a filmre és megjelennek szélhatások, ami a film szélén 4-5%-os hibát okoz.

Megvizsgáltam, hogy kiértékelhetőek-e filmek a besugárzás után 2 órával, az eredményeket a 16. táblázat tartalmazza. Mindkét szoftverrel elvégeztem a kiértékelést, maximális dózisra normálva, (ez az a normálas, amely mindkét programban szerepel) FilmQAPro-val újrakalibrálást is elvégezem. Két óra pihentetés után a film már elég stabil a kiértékelésre, a polimerizációs folyamatok legnagyobb része addigra lejátszódik. A FilmQAPro-val való újrakalibrálás itt is jobb eredményeket ad.

16. Táblázat: A besugárzás és a kiértékelés közti eltelt idő hatása a gamma analízis eredményére.

<table>
<thead>
<tr>
<th></th>
<th>SBRT</th>
<th>SIB</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3%, 3mm</td>
<td>2%, 2mm</td>
</tr>
<tr>
<td>PTW Mephysto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2h</td>
<td>96,9%</td>
<td>99,9%</td>
</tr>
<tr>
<td>24h</td>
<td>99,7%</td>
<td>96,7%</td>
</tr>
<tr>
<td>FilmQAPro (újrakalibrálással)</td>
<td>2h</td>
<td>100%</td>
</tr>
<tr>
<td>24h</td>
<td>99,5%</td>
<td>98,8%</td>
</tr>
</tbody>
</table>
6 Protokoll

A radiokróm film sajátosságainak, a szkenner korlátainak, és a rendelkezésre álló eszközök tulajdonságainak ismeretében kialakítható egy helyi, biztonsággal használható protokoll a besugárzási tervek ellenőrzéséhez.

1. Kalibrálás
 a. Minden csomag filmet újra kell kalibrálni
 b. Másfél vagy két hónaposnál régebbi kalibráló sorozat rossz eredményeket ad, újra kell kalibrálni
 c. A film pozícionálásához szükséges 3 db. 5 cm vastagságú vízékvivalens szilárdtest fantom, a beállítás az 52. ábrán látható.
 d. A kalibráláshoz használt MU-hez tartozó, 5 cm mélyen levő dózisértékeket a tervezőrendszerből olvashatjuk ki, és kiértékelő szoftverek segítségével létrehozzuk a kalibrációs görbét.

2. Terv ellenőrzés
 a. Film széléről kell levágni 3.8 cm-es sávot, ezt el kell felezni, jelölni kell a jobb felső sarkát, az orientáció megtartásához.
 b. Fantomot pozícionálni kell a kezelő asztalon, a lézer segítségével rá kell állni az izocentrum jelölésekre.
 c. A filmet a fantom közepére kell helyezni, két sarkát kis részen rögzíteni kell, (az első alkalommal, filctollal megjelöltem a fantomon a film helyét, hogy a fantom szélével párhuzamosan lehessen mindig elhelyezni).
 d. A lézersugarak metszésénél, filctollal megjelöltem a film négy szélét, hogy rekonstruálni lehessen az izocentrum helyét a kiértékelő szoftverben.
e. Terv minőségbiztosítása. Az ellenőrizni kívánt terv mezőelrendezését rá kell másolni a fantomra, az izocentrum helyzetének megtartásával és újraszámoltatni a dózisloszlást. Az így kapott tervvel kell besugarazni a filmet.

f. Ha a „One Scan” protokoll alkalmazzuk, akkor minimum fél órát kell várni a terv szkennelésével és kiértékelésével, ha klasszikusan értékeljük ki, akkor javasolt 24 órát pihentetni a filmet.

3. Film beolvasása

a. Legalább 10 perc bemelegedési időt kell hagyni a szkennernek, és az első három beolvasást nem kell elmenteni. A filmet a szkenner felületének közepére kell pozicionálni, lehetőleg párhuzamosan a szélekkel, figyelni kell a film orientációjára, jobb sarkában levő jelölés ugyanúgy legyen, mint az exponálásnál volt.

b. Megfelelő szkennelési beállítások alkalmazása

c. Ha „One scan” protokollt használunk, akkor a kiértékelni kívánt filmmel együtt kell beolvasni a két kalibráló filmet is. (53. ábra)

4. Dózistérkép exportálása a tervezőrendszerből:

Annak a szeletnek a dózisloszlást kell kimenteni ahová a filmet tettük, ami általában az izocentrum síkjára. Mivel a fantom három 5 cm vastag vízekvivalens téglátestből áll, ezek felülete nem simul teljesen egymásra, légrés marad közöttük. Nem ajánlott a légrés síkjából kiexportált dózisloszlást használni, mert itt a tervezőrendszer rosszul számol, 1 mm-el fölötte vagy alatta levő szeletből kell kimenteni a dózistérképet. A másik megoldás az lehet, ha az egész fantom CT-számát átírjuk a víz CT-számára, így egy egységes homogén térfogatot kapunk, ami esetében a tervezőrendszer jól számol, az innen kiexportált dózisloszlás felel meg legjobban a valóságnak.

5. Dózis térkép létrehozás a filmen kialakuló elszíneződésből, kalibráló görbe alapján.

6. Összehasonlítás

a. A kiértékelő szoftverek az izocentrum, vagy a mintázat felismerés alapján fuzionálni tudják a képeket, de kézi illesztésre is van lehetőség.

b. Megadjuk gamma analízis feltételeit (dóziseltérés, távolságeltérés, elhanyagolható küszöb dózis érték). Elvégezzük az összehasonlítást.
Az önálló filmek egyre nagyobb szerepet kapnak a sugárterápiás dozimetríaiban. Nem igényelnek hívóberendezést és elemzésük is megoldható számítógépes program segítségével. Célom volt az önálló filmek klinikai alkalmazási feltételeinek meghatározása. Az önálló film alapú film dozimetria működési elvének megismerése és összefoglaló leírása.

A munkám során elvégeztem a szkenner és a filmelemző program dóziskalibrálását, a térbeli felbontás és érzékenységvizsgálatát. Önálló filmmel megmérem a dózisprofilokat és mélydózis görbékét és összehasonlítottam felvezető detektoros mérésekké. Az eredmények alapján megállapítható, hogy film energia független MV-os fotonenergia tartományban, valamint dózisteljesítmény független, tehát alkalmas sugárterápiás tervek ellenőrzésére.

Különböző besugárzási technikájú terveket hasonlítottam össze a tervezőrendszerből kieportált dóziseloszlással. Az összehasonlítást két különböző gyártó által forgalmazott filmelemző szoftverrel végeztem. Mindkét kiértékelő szoftver alkalmas a filmek kalibrálására, kiértékelésére, valamint a tervezőrendszerből kieportált és a filmen kialakult dózisérképek összehasonlítására. A PTW Mephysto esetében minden lépést külön modulban, külön mentéssel kell végezni, elsőre átláthatóbb a kiértékelés folyamata, de időigényesebb. A FilmQAPro-nál minden adatunkat, a kalibrálást, a dózis térképeket és az összehasonlítást mappás szerkezetben látjuk, mindenhez könnyen áttekinthető, egy ablakon belül több elemzés is végezhető.

A filmek hátránya, más detektorokkal szemben, hogy a mérés után közvetlenül nem lehet elvégezni az elemzést, mivel meg kell várni a polimerizációs folyamat végét, a sötétedési időt, ami legalább 24 óra (ez után is sötétedik, de nem jelentősen). A FilmQAPro esetében, ha alkalmazzuk az újrakalibráló funkcióját, akkor is legalább fél órát várni kell az elemzésig. Az önálló film előnye a félvezető detektormátrixhoz képest, hogy jobb a felbontása, ami pontosabb gamma analízist tesz lehetővé.

Összességében megállapítható hogy az önálló film alkalmas a sugárterápiás tervek kétdimenziós ellenőrzésére, mivel nagy a felbontása, így kis mezők esetében is pontos eredményt kapunk. Az önálló filmek maximális mérete adott, ezért nagy cétérzogatok esetében, a film szélének inhomogenitása miatt nő a hibaszállék. Minőségbiztosítási ellenőrzéseknél kiválóan alkalmazható, profilok, mélydózis-görbék, ékelt mezők mérése esetében jó egyezést ad a gyorsító bemérésekhez kapott értékekkel, de használata csak relatív dozimetríaiban ajánlott.
8 Rövidítések jegyzéke

ADC konverter – Analóg-digitális jelátalakító

CCD - Charge-Coupled Device

2D - két dimenzió

Gantry - forgóállvány

ICRU - International Commission Radiation Units and Measurement

IMRT – Intensity-modulated radiation therapy - intenzitás modulált sugárterápia

IMAT - Intensity modulated arc therapy, (RapidArc) –intenzitás modulált ívbesugárzás

KERMA - kinetic energy released per unit mass

MLC- multileaf collimator - sokleveles kollimátor

MU – Monitor Units – monitor egység

OD – optikai denzitás

PET – pozitron emissziós tomográfia

PMT - foto multiplikátor

RGB spektrum – Red-Green-Blue spektrum – Piros-Zöld-Kék színspektrum

ROI – Region of Interest – vizsgálat tárgyát képező terület

SBRT - Stereotactic Body Radiation Therapy – sztereotaxiás sugárterápia

SIB - Simultaneous-integrated boost - szimultán integrált boost

SPECT - Single photon emission computed tomography

SSD – Source to surface distance - forrás-felszín távolság

TTC - trifenil-tetrazólium-klorid
9 Irodalomjegyzék

[19] 16/2000. (VI. 8.) EüM rendelet:
 http://net.jogtar.hu/jr/gen/hjegy_doc.cgi?docid=A0000016.EUM

10 Köszönetnyilvánítás

Szeretnék köszönetet mondani az Országos Onkológiai Intézetnek, Prof. dr. Kásler Miklós főigazgató úrnak, Prof. dr. Polgár Csaba centrumvezető főorvos úrnak és dr. Major Tibor részlegvezető úrnak, hogy biztosították számomra a diplomamunka készítésének körülményeit.

Köszönetet mondanék munkatársaimnak: Király Rékának, Béla Dalmának, Herein Andrásnak, Pócza Tamásnak és Stelczer Gábornak a munkámban nyújtott segítségükért.

Megköszönném minden barátomnak és családtagomnak a diplomám megírásához szükséges támogatást.
<table>
<thead>
<tr>
<th>Típus</th>
<th>Kép</th>
<th>Összetétel</th>
<th>Dózistartomány</th>
<th>Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD-S10</td>
<td>Sensitive Layer - 15 μm</td>
<td>Polyester Base - 0,7 mm</td>
<td>5-500Gy</td>
<td>Egyrétegű, lineáris gyorsítók mezőellenerőségehez használtuk. Kivitelezése: 20 x 25 cm-es lapok.</td>
</tr>
<tr>
<td></td>
<td>Sensitive Layer - 3 μm</td>
<td>Adhesive Layer - 15 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Conductive Layer - 0,005 mm</td>
<td>Polyester Base - 99 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-55</td>
<td>Sensitive Layer - 7 μm</td>
<td>Adhesive Layer - 15 μm</td>
<td>10-100Gy</td>
<td>Többrétegű az érzékenység növelése miatt, amit az egyrétegű filmek egymásra rétegezésével lehet elérni. A jelenség a Beer-Lambert törvényen alapszik: a közegben elnyelt fény exponenciálisan változik a fény közegben megértett útjának hosszával</td>
</tr>
<tr>
<td></td>
<td>Conductive Layer - 0,005 mm</td>
<td>Polyester Base - 99 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MD-55-2</td>
<td>Sensitive Layer - 15 μm</td>
<td>Pressure Sensitive Adhesive - 44,5 μm</td>
<td>1-250 Gy</td>
<td>Több rétegű, "szendvics" technológiával készült, ami megnöveli az érzékenységet. Kivitelezése: 12,5x12,5cm</td>
</tr>
<tr>
<td></td>
<td>Pressure Sensitive Adhesive - 44,5 μm</td>
<td>Polyester Base - 99 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensitive Layer - 15 μm</td>
<td>Polyester Base - 99 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS</td>
<td>CLEAR POLYESTER 97 μm</td>
<td>ACTIVE LAYER 40 μm</td>
<td>0,5-50 Gy</td>
<td>MD-55-2 továbbfejlesztése, 40μm enmézió van két 97μm vastagsági políészter között. Ez jelentősen érzékenyebb és egyszerűbb felépítés, a vízben való használhatóság fenntartása mellett.</td>
</tr>
<tr>
<td></td>
<td>CLEAR POLYESTER 97 μm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT</td>
<td></td>
<td>C(42,3%)</td>
<td>H(39,7%)</td>
<td>O(16,2%)</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>---------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>EBT2</td>
<td></td>
<td>Polyester Laminate, 50 μm</td>
<td>Adhesive Layer, 25 μm</td>
<td>Active Layer, ~28 μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Polyester, 175 μm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EBT3</td>
<td></td>
<td>Matte Polyester, 100 μm</td>
<td>Active Layer, ~28 μm</td>
<td>Matte Polyester, 100 μm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>